PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation of seismic hazard maps for Assam region and incorporation of the site effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Probabilistic seismic hazard assessment (PSHA), including a site-specific amplification study, is crucial to evaluate site-specific spectra of soil sites to better understand the behavioural patterns of the soils under earthquake excitation. This paper represents the results of the PSHA for Assam state, located in the highest seismic zone of India ever delineated to date. In that sense, the study area is divided into ten areal zones concerning seismicity source modelling to represent the seismo-genesis of the Assam state in detail. The earthquake recurrence parameters of each zone are obtained from Gutenberg–Richter (G–R) recurrence relation with updated homogenized and de-clustered earthquake catalogue from 1735 up to 2021. Earthquakes with magnitude greater than 4 (M>4) are considered using eight attenuation relationships for continental active shallow crust region, subduction zone and intraplate region. Hazard curves are obtained using a logic tree structure thus minimizing the epistemic uncertainty. The peak ground acceleration (PGA) value obtained at the rock outcrop of the Assam state for 10, 5, 2, and 0.5% probability of exceedance in 50 years with return periods such as 475, 975, 2475, and 9975 years lies between 0.24 and 0.34 g, 0.3 and 0.44 g, 0.42 and 0.59 g, and 0.56 and 0.91 g, respectively. The estimated PGA value at rock outcrop level is comparatively higher than that reported in the codal provisions. Site-specific response spectra at bedrock level (Vs=1100 m/s) for major cities (Jorhat, Tezpur, Silchar, Dibrugarh, Guwahati, Nagaon) of Assam state have been proposed for different earthquake return periods of 475,2475, and 9975 years. Finally, site amplification study is performed for Guwahati city and surface level 5% damped response spectra with PGA of 0.696 and 0.924 g are obtained for earthquake a return period of 2475 and 9975 years, respectively.
Czasopismo
Rocznik
Strony
1957--1977
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
  • Homi Bhabha National Institute, Mumbai 400094, India
  • Reactor Safety Division, Bhabha Atomic Research Center, Mumbai 400085, India
  • Homi Bhabha National Institute, Mumbai 400094, India
  • Reactor Safety Division, Bhabha Atomic Research Center, Mumbai 400085, India
  • Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
Bibliografia
  • 1. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismol Res Lett 81:195–206
  • 2. Anbazhagan P, Abraham GS (2020) Region specific seismic hazard analysis of Krishna Raja Sagara Dam. India Engineering Geology 268:105512
  • 3. Anbazhagan P, Bajaj K, Matharu K, Moustafa SS, Al-Arifi NS (2019) Probabilistic seismic hazard analysis using the logic tree approach–Patna district (India). Nat Hazard 19:2097–2115
  • 4. Angelier J, Baruah S (2009) Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys J Int 178:303–326
  • 5. Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93:1703–1729
  • 6. Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96:2181–2205
  • 7. Avouac J (2015) Mountain building: from earthquakes to geologic deformation, Treatise on Geophysics, vol 6. Elsevier, Amsterdam
  • 8. Bahuguna A, Sil A (2020) Comprehensive seismicity, seismic sources and seismic hazard assessment of Assam, North East India. J Earthq Eng 24:254–297
  • 9. Bajaj K, Anbazhagan P (2021) Detailed seismic hazard, disaggregation and sensitivity analysis for the Indo-Gangetic basin. Pure Appl Geophys 178(6):1977–1999
  • 10. Bandyopadhyay S, Parulekar Y, Sengupta A, Chattopadhyay J (2021a) Structure soil structure interaction of conventional and base-isolated building subjected to real earthquake. Structures 32:474–493
  • 11. Bandyopadhyay S, Sengupta A, Reddy G (2021b) Development of correlation between SPT-N value and shear wave velocity and estimation of non-linear seismic site effects for soft deposits in Kolkata city. Geomech Geoeng 16:1–19
  • 12. Baro O, Kumar A, Ismail-Zadeh A (2020) Seismic hazard assessment of the Shillong plateau using a probabilistic approach. Geomat Nat Haz Risk 11:2210–2238
  • 13. Basu D, Boga M, Dey A (2019) A time-domain nonlinear effective-stress non-Masing approach of ground response analysis of Guwahati city, India. Earthq Eng Eng Vib 18:61–75
  • 14. Bilham R, England P (2001) Plateau ‘pop-up’in the great 1897 Assam earthquake. Nature 410:806–809
  • 15. BIS-1893. (2016) Criteria for earthquake resistant design of structures. Part-1. Bureau of Indian Standards, India
  • 16. Bommer JJ, Scherbaum F, Bungum H, Cotton F, Sabetta F, Abrahamson NA (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95:377–389
  • 17. Borah N, Kumar A, Dhanotiya R (2021) Seismic source zonation for NE India on the basis of past EQs and spatial distribution of seismicity parameters. J Seismol 25(6):1483–1506
  • 18. Chingtham P, Tiwari A, Yadav AK (2019) Forecasting seismic activity rates in northwest Himalaya through multivariate autoregressive forecast of seismicity algorithm. Acta Geophys 67:465–476
  • 19. Chiou BS-J, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30:1117–1153
  • 20. Code UB (1997) International building code. International Code Council, USA
  • 21. Corigliano M, Lai CG, Menon A, Ornthammarath T (2012) Seismic input at the archaeological site of Kancheepuram in Southern India. Nat Hazards 63:845–866
  • 22. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606
  • 23. Das S, Gupta ID, Gupta VK (2006) A probabilistic seismic hazard analysis of northeast India. Earthq Spectra 22:1–27
  • 24. Das R, Wason H, Sharma M (2012) Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India. J Earth Syst Sci 121:19–28
  • 25. Das R, Sharma M, Wason H (2016a) Probabilistic seismic hazard assessment for northeast India region. Pure Appl Geophys 173:2653–2670
  • 26. Das R, Sharma M, Wason H (2016b) Probabilistic seismic hazard assessment for northeast India region. Pure Applied Geophys 173:2653–2670
  • 27. Devi A, Kalita S (2014) Seismic hazard analysis of Northeast India and its adjoining region. Int J Environ Sci 4:859–874
  • 28. Douglas J, Cotton F, Abrahamson NA, Akkar S, Boore DM and Di Alessandro C (2013) Pre-selection of ground motion prediction equations. Report produced in context of GEM GMPE project
  • 29. Firtana-Elcomert K, Kocaoğlu A (2021) Investigation of fault-zone induced site effect in the İzmit basin, Turkey. Acta Geophys 69(6):2069–2083
  • 30. Gardner J, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64:1363–1367
  • 31. Gasparini DA (1976) Simulated earthquake motions compatible with prescribed response spectra-SIMQKE. A computer program distributed by NISEE
  • 32. Ghione F, Poggi V, Lindholm C (2021) A hybrid probabilistic seismic hazard model for Northeast India and Bhutan combining distributed seismicity and finite faults. Phys Chem Earth, Parts A/B/C 123:103029
  • 33. Grünthal G, Wahlström R (2006) New generation of probabilistic seismic hazard assessment for the area Cologne/Aachen considering the uncertainties of the input data. Nat Hazards 38:159–176
  • 34. Gupta I (2002) The state of the art in seismic hazard analysis. ISET J Earthq Technol 39:311–346
  • 35. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188
  • 36. Haque DME, Khan NW, Selim M, Kamal A, Chowdhury SH (2020) Towards improved probabilistic seismic hazard assessment for Bangladesh. Pure Appl Geophys 177:3089–3118
  • 37. Iyengar R, Chadha R, Balaji Rao K and Raghukanth S (2010) Development of probabilistic seismic hazard map of India. National Disaster Management Authority, Government of India, India
  • 38. Jouanne F, Mugnier J-L, Gamond J, Le Fort P, Pandey M, Bollinger L, Flouzat M, Avouac J (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157:1–14
  • 39. Kanth SR, Dash SK (2010) Deterministic seismic scenarios for North East India. J Seismolog 14:143–167
  • 40. Kanth SR, Sreelatha S, Dash SK (2008) Ground motion estimation at Guwahati city for an Mw 8.1 earthquake in the Shillong plateau. Tectonophysics 448:98–114
  • 41. Kayal J, Arefiev S, Barua S, Hazarika D, Gogoi N, Kumar A, Chowdhury S and Kalita S (2006) Shillong plateau earthquakes in northeast India region: complex tectonic model. Current Science, pp. 109–114
  • 42. Khattri K, Rogers A, Perkins D, Algermissen S (1984) A seismic hazard map of India and adjacent areas. Tectonophysics 108:93–134
  • 43. Kijko A (2004) Estimation of the maximum earthquake magnitude, m max. J Pure Appl Geophys 161:1655–1681
  • 44. Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654
  • 45. Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134
  • 46. Kolathayar S, Sitharam T, Vipin KS (2012) Spatial variation of seismicity parameters across India and adjoining areas. Nat Hazards 60:1365–1379
  • 47. Kumar SS, Krishna AM (2013) Seismic ground response analysis of some typical sites of Guwahati city. Int J Geotech Earthq Eng 4:83–101
  • 48. Kumar SS, Krishna AM, Dey A (2017) Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn Earthq Eng 99:157–167
  • 49. Leptokaropoulos KM, Karakostas VG, Papadimitriou EE, Adamaki AK, Tan O, İnan S (2013) A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination. Bull Seismol Soc Am 103:2739–2751
  • 50. Lin P-S, Lee C-T (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98:220–240
  • 51. Lindholm C, Parvez I, Kühn D (2016) Probabilistic earthquake hazard assessment for Peninsular India. J Seismolog 20:629–653
  • 52. Loi DW, Raghunandan ME, Swamy V (2018) Revisiting seismic hazard assessment for Peninsular Malaysia using deterministic and probabilistic approaches. Nat Hazard 18:2387–2408
  • 53. Mukhopadhyay B, Acharyya A, Dasgupta S (2009) Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya. Acta Geophys 57:387–399
  • 54. Muthuganeisan P, Raghukanth S (2016a) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part I. Site-specific ground motion relations. Acta Geophysica 64:336–361
  • 55. Muthuganeisan P, Raghukanth S (2016b) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India Part II Hazard Estimation. Acta Geophysica 64:853–884
  • 56. Nandy D (2001) Geodynamics of North-Eastern India and the adjoining region. ACB Publication. Calcutta, India
  • 57. Nas M, Jalilian A, Bayrak Y (2019) Spatiotemporal comparison of declustered catalogs of earthquakes in Turkey. Pure Appl Geophys 176:2215–2233
  • 58. Nath SK, Thingbaijam KKS (2011) Peak ground motion predictions in India: an appraisal for rock sites. J Seismolog 15:295–315
  • 59. Nath S, Thingbaijam K (2012) Probabilistic seismic hazard assessment of India. Seismol Res Lett 83:135–149
  • 60. Nath SK, Thingbaijam KKS, Raj A (2008) Earthquake hazard in Northeast India—A seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. J Earth Syst Sci 117:809–831
  • 61. Nath SK, Thingbaijam KKS, Maiti SK, Nayak A (2012) Ground-motion predictions in Shillong region, northeast India. J Seismolog 16:475–488
  • 62. Pallav K, Raghukanth S, Singh KD (2015) Estimation of seismic site coefficient and seismic microzonation of Imphal City, India, using the probabilistic approach. Acta Geophys 63:1339–1367
  • 63. Pallav K (2010) Seismic microzonation of Imphal City and probabilistic seismic hazard assessment of Manipur state. PhD, IIT Guwahati
  • 64. Parvez IA, Ram A (1999) Probabilistic assessment of earthquake hazards in the Indian subcontinent. Pure Appl Geophys 154:23–40
  • 65. Parvez IA, Vaccari F, Panza GF (2003) A deterministic seismic hazard map of India and adjacent areas. Geophys J Int 155:489–508
  • 66. Patil SG, Menon A, Dodagoudar G (2018) Probabilistic seismic hazard at the archaeological site of Gol Gumbaz in Vijayapura, south India. J Earth Syst Sci 127:1–24
  • 67. Phillips C, Hashash YM (2009) Damping formulation for nonlinear 1D site response analyses. Soil Dyn Earthq Eng 29:1143–1158
  • 68. Raghukanth S (2010) Estimation of seismicity parameters for India. Seismol Res Lett 81:207–217
  • 69. Rahman MM, Bai L (2018) Probabilistic seismic hazard assessment of Nepal using multiple seismic source models. Earth Planet Phys 2:327–341
  • 70. Ramkrishnan R, Kolathayar S, Sitharam T (2021) Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations. Bull Eng Geol Environ 80(10):8137–8157
  • 71. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res Solid Earth 90:5479–5495
  • 72. Rehman SU, Lindholm C, Ahmed N, Rafi Z (2014) Probabilistic seismic hazard analysis for the city of Quetta, Pakistan. Acta Geophys 62:737–761
  • 73. Roy AB, Purohit R (2018) Indian shield: precambrian evolution and Phanerozoic reconstitution. Elsevier, Amsterdam
  • 74. Shanker D, Singh H (2007) Application of the time-predictable model in Peninsular India for future seismic hazard assessment. Acta Geophys 55:302–312
  • 75. Sharma M (2003) Seismic hazard in the northern India region. J Seismol Res Lett 74:141–147
  • 76. Sharma ML, Douglas J, Bungum H, Kotadia J (2009) Ground-motion prediction equations based on data from the Himalayan and Zagros regions. J Earthquake Eng 13:1191–1210
  • 77. Sharma M and Malik S (2006) Probabilistic seismic hazard analysis and estimation of spectral strong ground motion on bed rock in north east India. 4th international conference on earthquake engineering, pp. 12–13
  • 78. Sil A, Sitharam T, Kolathayar S (2013) Probabilistic seismic hazard analysis of Tripura and Mizoram states. Nat Hazards 68:1089–1108
  • 79. Sisi AA, Askan A, Erberik MA (2017) Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects. Acta Geophys 65:309–330
  • 80. Sitharam T, Sil A (2014) Comprehensive seismic hazard assessment of Tripura and Mizoram states. J Earth Syst Sci 123:837–857
  • 81. Socquet A, Vigny C, Chamot‐Rooke N, Simons W, Rangin C and Ambrosius B (2006) India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J Geophys Res, 111
  • 82. Steckler MS, Mondal DR, Akhter SH, Seeber L, Feng L, Gale J, Hill EM, Howe M (2016) Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nat Geosci 9:615–618
  • 83. Stepp J (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. Proc 1st Int Conf Microzonazion Seattle 2:897–910
  • 84. Suckale J, Grünthal G (2009) Probabilistic seismic hazard model for Vanuatu. Bull Seismol Soc Am 99:2108–2126
  • 85. Tsapanos TM, Yadav R, Olasoglou EM, Singh M (2016) Assessment of the relative largest earthquake hazard level in the NW Himalaya and its adjacent region. Acta Geophys 64:362–378
  • 86. Uhrhammer RJEN (1986) Characteristics of northern and central California seismicity. Earthq Notes 57:21
  • 87. Valdiya K (1980) The two intracrustal boundary thrusts of the Himalaya. Tectonophysics 66:323–348
  • 88. Votsi I, Tsaklidis GM, Papadimitriou EE (2011) Seismic hazard assessment in central Ionian Islands area (Greece) based on stress release models. Acta Geophys 59:701–727
  • 89. Wang Y, Sieh K, Tun ST, Lai KY, Myint T (2014) Active tectonics and earthquake potential of the Myanmar region. J Geophys Res Solid Earth 119:3767–3822
  • 90. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382
  • 91. Yousuf M, Bukhari K (2020) Hazard estimation of Kashmir Basin, NW Himalaya using probabilistic seismic hazard assessment. Acta Geophys 68:1295–1316
  • 92. Zhao JX, Jiang F, Shi P, Xing H, Huang H, Hou R, Zhang Y, Yu P, Lan X, Rhoades DA (2016) Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bull Seismol Soc Am 106:1535–1551
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b1f6327-9d9d-4547-a551-0d4916d10bca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.