PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement and analysis of the performance of the PVP-20 slip detection device

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most critical elements ensuring the proper operation of locomotives are devices that detect and eliminate slipping, especially during the start-up of the locomotive in difficult operating conditions. Various types of slip control systems and methods are used on traction vehicles, depending on the design of a given locomotive and the assumptions made related to the functionality of a given solution. This article describes the PVP-20 type slip detection device used in many older electric locomotives. A proprietary measuring system was developed, enabling it to be connected to the locomotive circuit, to perform measurements in conditions of large disturbances and high voltages prevailing on the electric locomotive. Using this measuring system, the PVP-20 device was tested under operating conditions for the ability to detect slips. It has been shown that the described device is highly insensitive. Hence, we propose our concept for solving this problem.
Rocznik
Tom
Strony
93--108
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
autor
  • PKP Intercity S.A., Półłanki 1 Street. 30-858 Cracow, Poland
Bibliografia
  • 1. Aihara M., K. Kondo, M. Nagataki, O. Yamazaki. 2022. “Design Method of the Wheel Slip Speed Feedback Controller and Phase Lead Compensator in Locomotives”. IEEJ Journal of Industry Applications 11(5): 686-695. DOI: 10.1541/ieejjia.21014154.
  • 2. Dobrowolski Maciej. 1978. “Wyniki badań układów elektrycznych wykrywania i likwidacji poślizgu w lokomotywie 4E(EU07)”. [In English: “Results of tests of electric systems of slip detection and elimination in locomotive 4E (EU07)”]. Trakcja i Wagony 7-8. P. 207-211.
  • 3. Jing He, Xintian Zuo, Changfan Zhang, Songan Mao, Yunguo He. 2019. “Anti-slip control based on optimal slip ratio for heavy-haul locomotives”. The Journal of Engineering 23: 9069-9074. DOI: 10.1049/joe.2018.9187.
  • 4. Kaihui Zhao, Peng Li, Changfan Zhang, Jing He, Yanfei Li, Tonghuan Yin. 2018. “Online Accurate Estimation of the Wheel-Rail Adhesion Coefficient and Optimal Adhesion Antiskid Control of Heavy-Haul Electric Locomotives Based on Asymmetric Barrier Lyapunov Function”. Journal of Sensors. Article ID: 2740679. DOI: 10.1155/2018/2740679.
  • 5. Kałuża Eugeniusz. 2009. „Analiza czynników ograniczających parametry trakcyjne lokomotyw elektrycznych o układzie osi CoCo, zasilanych z sieci 3 kV DC”. [In English: “Analysis of factors limiting the traction parameters of electric locomotives with CoCo axis system, powered from 3 kV DC network”]. Technika Transportu Szynowego 10(106). Z. 1-E. P.: 101-112.
  • 6. LEM. Voltage Transducer LV100. Available at: https://www.lem.com/sites/default/files/products_datasheets/lv_100-3000_sp12.pdf.
  • 7. Lewandowski Mirosław. 1998. „Układ regulatora prędkości dla pojazdu trakcyjnego przy wykorzystaniu maksymalnego współczynnika przyczepności”. II Krajowe Sympozjum „Komputerowe systemy wspomagania prac w nauce, przemyśle i transporcie”. Politechnika Radomska. [In English: “Speed governor system for a traction unit using the maximum coefficient of adhesion”. II National Symposium “Computer systems supporting work in science, industry and transport”. Radom University of Technology]. Zakopane, Poland.
  • 8. Marciszewski Henryk, Jerzy Pawlus, Stanisław Sumiński. 1974. Lokomotywy elektryczne serii EU06 i EU07. [In English: Electric locomotives of the EU06 and EU07 series]. Warsaw: WKiŁ.
  • 9. Moaveni Bijan, Fathabadi Fatemeh Rashidi, Molavi Ali. 2022. “Fuzzy Control System Design for Wheel Slip Prevention and Tracking of Desired Speed Profile in Electric Trains”. Asian Journal of Control 24(1): 388-400. DOI: 10.1002/asjc.2472.
  • 10. Molatefi H., I. Ferestade, N. Taefi Aghdam. 2020. “Dynamic Modeling and Active Control of Slip Phenomenon in a Four-axle Locomotive”. International Journal of Railway Research 7(2): 73-87.
  • 11. Mousavi Alireza, Amir Markazi, Saleh Masoudi. 2017. “Adaptive Fuzzy Sliding-Mode Control of Wheel Slide Protection Device for ER24PC Locomotive”. Latin American Journal of Solids and Strutures 14(11). DOI: 10.1590/1679-78253980.
  • 12. Pichlik Petr. 2019. “Summary of the Modern Wheel Slip Controller Principles”. Transactions on Electrical Engineering 8(2): 26-31. DOI: 10.14311/TEE.2019.2.026.
  • 13. Pichlík Petr, Zděnek Jiri. 2014. “Overview of Slip Control Methods Used in Locomotives”. Transactions on Electrical Engineering 3(2).
  • 14. Pichlík Petr, Zděnek Jiri. 2016. “Adhesion Force Detection Method Based on the Kalman Filter for Slip Control Purpose”. Automatika 57(2): 405-415. DOI: 10.7305/automatika.2016.10.1152.
  • 15. Song Wang, Wenbo Zhang, Jingchun Huang, Qingyuan Wang, Pengfei Sun. 2019. “Adhesion control of heavy-duty locomotive based on axle traction control system”. IEEE Access 7: 164614-164622. DOI: 10.1109/ACCESS.2019.2952268.
  • 16. Spiryagin Maksym, Yan Sun, Colin Cole, Sott Simson, Ingemar Persson. 2011. “Development of Traction Control for Hauling Locomotives”. Journal of System Design and Dynamics 5(6): 1214-1225. DOI: 10.1299/jsdd.5.1214.
  • 17. Tian Ye. 2015. Locomotive traction and rail wear control. PhD Thesis. School of Mechanical and Mining Engineering, The University of Queensland. DOI: 10.14264/uql.2015.939.
  • 18. Wago. Wago 750 XTR Ethernet module. Available at: https://www.wago.com/pl/c/sterowniki-plc.
  • 19. Yamashita Michihiro, Tadashi Soeda. 2010. “A Novel Slip Control Method Considering Axle-weight Transfer for Electric Locomotive”. 2010 IEEE Vehicle Power and Propulsion Conference. DOI: 10.1109/VPPC.2010.5729117.
  • 20. Yamashita Michihiro, Tadashi Soeda. 2011. “Development of Re-adhesion Control Method Considering Axle-weight Transfer of Electric Locomotive”. QR of RTRI 52(1). DOI 10.2219/rtriqr.52.7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b1b27aa-22d5-4b0d-9742-347b2ffc3e63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.