PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ag+/S2O8 2– system for the degradation of aqueous flutriafol

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degradation of flutriafol in aqueous persulfate (S2O82–) system in the presence of selected transition metal ions was investigated. In the presence of Ag+ or Fe2+, flutriafol degradation occurs, whereas in the presence of Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Bi3+ ions, the degradation is less than 15%. The Ag+/ S2O82– aqueous system being the most effective was adopted for experimental and theoretical investigations. It was confirmed that pH of 3.0 is the most suitable, and that both · SO4and ·OH– radicals are the main active species to afford flutriafol degradation, with the former contributes more than the latter. To elucidate degradation mechanism, molecular orbital calculations were performed and reaction intermediates identified by GC/MS and HPLC/MS/MS analyses. Three degradation pathways are proposed that involve the cleavage of C–N and C–C bonds as a result of ·SO4 attack, as well as the formation of hydroxylated products due to · OH radicals.
Rocznik
Strony
57--72
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
autor
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
Bibliografia
  • [1] WHITE P.M., POTTER T.L., CULBREATH A.K., Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics, Sci. Total Environ., 2010, 408 (6), 1393.
  • [2] ZHANG Q., HUA X.D., SHI H.Y., LIU J.S., TIAN M.M., WANG M.H., Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol, J. Hazard. Mater., 2015, 28, 465.
  • [3] YU P.Z., JIA C.H., SONG W.C., LIU F.M., Dissipation and residues of flutriafol in wheat and soil under field conditions, B, Environ. Contam. Tox., 2012, 89 (5), 1040.
  • [4] MAVROEIDI V.I., SHAW M.W., Sensitivity distributions and cross-resistance patterns of Mycosphaerella graminicola to fluquinconazole, prochloraz and azoxystrobin over a period of 9 years, Crop. Prot., 2005, 24 (3), 259.
  • [5] HERMANSON M.H., ISAKSSON E.H., TEIXEIRA C., MUIR D.C.G., COMPHER K.M., LI Y.F., IGARASHI I., KAMIYAMA K., Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway, Environ. Sci. Technol., 2005, 39 (21), 8163.
  • [6] CASARA K.P., VECCHIATO A.B., LOURENCETTI C., PINTO A.A., DORES E.F.G.C., Environmental dynamics of pesticides in the drainage area of the Sao Lourenco River Headwaters, Mato Grosso State, Brazil, J. Brazil. Chem. Soc., 2012, 23 (9), 1719.
  • [7] MUNIER-LAMY C., BORDE O., Effect of a triazole fungicide on the cellulose decomposition by the soil microflora, Chemosphere, 2000, 41 (7), 1029.
  • [8] MUIR D.C., TEIXEIRA C., WANIA F., Empirical and modeling evidence of regional atmospheric transport of current-use pesticides, Environ. Toxicol. Chem., 2004, 23 (10), 2421.
  • [9] GILBERT-LOPEZ B., GARCIA-REYES J.F., MOLINA-DIAZ A., Determination of fungicide residues in baby food by liquid chromatography-ion trap tandem mass spectrometry, Food Chem., 2012, 135 (2), 780.
  • [10] ZHANG Q., HUA X., YANG Y., YIN W., TIAN M., SHI H., WANG M., Stereoselective degradation of flutriafol and tebuconazole in grape, Environ. Sci. Pollut. Res. Int., 2015, 22 (6), 4350.
  • [11] YANG H., WEI H.Q., HU L.T., LIU H.J., YANG L.P., AU C.T., YI B., Mechanism for the photocatalytic transformation of s-triazine herbicides by center dot OH radicals over TiO2, Chem. Eng. J., 2016, 300, 209.
  • [12] YANG H., AN T., LI G., SONG W., COOPER W.J., LUO H., GUO X., Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2. A case of β-blockers, J. Hazard. Mater., 2010, 179, 834.
  • [13] ZHANG R., SUN P., BOYER T.H., ZHAO L., HUANG C.H., Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS, Environ. Sci. Technol., 2015, 49 (5), 3056.
  • [14] LUTZE H.V., KERLIN N., SCHMIDT T.C., Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate, Water Res., 2015, 72, 349.
  • [15] YANG Y., PIGNATELLO J.J., MA J., MITCH W.A., Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs), Environ. Sci. Technol., 2014, 48 (4), 2344.
  • [16] OH W.D., LUA S.K., DONG Z., LIM T.T., Performance of magnetic activated carbon composite as peroxymono sulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes, J. Hazard. Mater., 2015, 2, 841.
  • [17] ANIPSITAKIS G.P., DIONYSIOU D.D., Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 2004, 38 (13), 3705.
  • [18] ROMERO A., SANTOS A., VICENTE F., GONZALEZ C., Diuron abatement using activated persulphate. Effect of pH, Fe(II) and oxidant dosage, Chem. Eng. J., 2010, 162 (1), 257.
  • [19] ZHOU L., ZHENG W., JIA Y., ZHANG J., ZENG C., ZHANG Y., WANG Q., YANG X., Ferrous-activated persulfate oxidation of arsenic(III) and diuron inaquatic system, J. Hazard. Mater., 2013, 263, 422.
  • [20] TAN C.Q., GAO N.Y., DENG Y., AN N., DENG J., Heat-activated persulfate oxidation of diuron in water, Chem. Eng. J., 2012, 203, 294.
  • [21] MENDEZ-DIAZ J., SANCHEZ-POLO M., RIVERA-UTRILLA J., CANONICA S., VON GUNTEN U., Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals, Chem. Eng. J., 2010, 163 (3), 300.
  • [22] ZOU J., MA J., CHEN L., LI X., GUAN Y., XIE P., PAN C., Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 2013, 47 (20), 11685.
  • [23] JI Y., FERRONATO C., SALVADOR A., YANG X., CHOVELON J.M., Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate. Implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 2014, 47, 2800.
  • [24] ZENG J., YANG H., LIU H., YI X., YANG L., YI B., Common characteristic assessments of transformation mechanism for substituted phenylurea herbicides by reactive oxygen species (ROSs) during photocatalytic process, Chem. Eng. J., 2015, 273, 519.
  • [25] YANG H., LIU H., HU Z., LIANG J., PANG H., YI B., Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process, Chem. Eng. J., 2014, 245 (1), 24.
  • [26] YANG H., YANG L., HU Z., LIU H., PANG H., YI B., General transformation law of chlorinated acetanilide herbicides by reactive oxidative species (ROSs) during photocatalytic process, J. Water Process. ., 2015, 8, e66.
  • [27] GHAUCH A., Rapid removal of flutriafol in water by zero-valent iron powder, Chemosphere, 2008, 7, 1816.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b1938e8-53c3-4838-93fa-69b3fc624271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.