PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Petrophysical rock typing and permeability prediction in tight sandstone reservoir

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the low-permeability reservoir was subdivided into several units based on three models; in the first model, porosity, permeability, pore sizes, and shale volume were used as an input in the heterogeneous rock analysis clustering workflow to define rock units; in the second model, rock types were defined using flow zone index. The third flow unit discriminator was proposed by the author; the model is based on relation between porosity, permeability, irreducible water saturation, and pore size distribution. Also, Wyllie–Rose equation for permeability in tight reservoir was core-calibrated, and coefficients e, d, and Kw were established. The reservoir is built of thin layers of sandstones with variable porosity, permeability, pore sizes, and irreducible water. The research was performed in two wells where as input well log data, the laboratory results of mercury injection porosimetry, permeability measurements, and nuclear magnetic resonance data were used. Furthermore, it was investigated whether the presence of fractures identified on XRMI images were strictly related to one flow unit.
Czasopismo
Rocznik
Strony
1895--1911
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Oil and Gas Institute - National Research Institute, Lubicz 25 A, 31‑503 Kraków, Poland
Bibliografia
  • 1. Alhashmi NF, Torres K, Faisal M, Segura Cornejo V, Bethapudi BP, Mansur S, Al Rawahi AS (2016) Rock typing classification and hydraulic flow units definition of one of the most prolific carbonate reservoir in the onshore Abu Dhabi, Abu Dhabi Co For Onshore Petroleum Operations Ltd
  • 2. Aliakbardoust E, Rahimpour-Bonab H (2013) Integration of rock typing methods for carbonate reservoir characterization. J Geophys Eng. https://doi.org/10.1088/1742-2132/10/5/055004
  • 3. Aliyev E, Saidian M, Prasad M, Russell B (2016) Rock typing in tight gas sands: a case study in lance and Mesaverde formations from Jonah field. J Nat Gas Sci Eng 33:1260–1270. https://doi.org/10.1016/j.jngse.2015.12.045
  • 4. Amaefule JO, Altunbay M, Tiab D, Kersey DG, Keelan D (1993) Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. Paper SPE 26436 presented at the 1993 SPE annual technical conference and exhibition in Houston
  • 5. Amann A, Krooss BM (2015) Effective gas permeability of tight gas sandstones as function of capillary pressure—a non- steady state approach. Geofluids. https://doi.org/10.1111/gfl.12155
  • 6. Berg RR (1986) Reservoir sandstones. Prentice-Hall, Inc., Englewood Cliffs
  • 7. Bliefnick DM, Kaldi JG (1996) Pore geometry; control on reservoir properties, walker creek field, Columbia and Lafayette counties, Arkansas. Am Assoc Pet Geol Bull 80:1027–1044
  • 8. Crain ER (1999) Crain petrophysical handbook. https://www.spec2000.net. Accessed 24 Apr 2019
  • 9. Doveton JH (1994) Geologic log analysis using computer methods. AAPG computer applications in geology. American Association of Petroleum Geologists, Tulsa
  • 10. Duenas C (2014) Understanding rock quality heterogeneity of Montney Shale Reservoir. Pouce Coupefield, Alberta, Canada
  • 11. Dullien FAL (1992) Porous media: fluid transport and pore structure. Academic Press, New York
  • 12. Guo G, Diaz MA, Paz F, Smalley J, Waninger EA (2005) Rock typing as an effective tool for permeability and water-saturation modeling: a case study in a clastic reservoir in the Oriente Basin. In: SPE annual technical conference and exhibition held in Dallas, Texas, USA
  • 13. Holloway MD (2018) Fracking: further investigations into the environmental considerations and operations of hydraulic fracturing, 2nd edn. Scrivener Publishing, New York
  • 14. Hong L, Fuqiang L, Liang C, Chao L, Jie L, Heping Y (2017) Research on evaluation method for water saturation of tight sandstone in Suxi region. In: IOP conference series earth and environmental science, vol 64, no (1), p 012040
  • 15. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417–441. https://doi.org/10.1037/h0071325
  • 16. Ilkhchi RK, Rezaee R, Harami RM, Friis M, Ilkhchi AK (2014) An integrated rock typing approach for unraveling the reservoir heterogeneity of tight sands in the Whicher Range field of Perth Basin. Western Australia J Geol 4(8):373
  • 17. Jiang Z, Li Z, Li F, Pang X, Yang W, Liu L, Jiang F (2015) Tight sandstone gas accumulation mechanism and development models. Pet Sci 12(4):587–605
  • 18. Keelan DK (1982) Core analysis for aid in reservoir description. Society of Petroleum Engineers, Richardson. https://doi.org/10.2118/10011-PA
  • 19. Laškova LN (1987) The Cambrian: oil fields of the Baltic region. Mokslas, Vilnius, pp 10–22
  • 20. Molenaar N, Cyziene J, Sliaupa S (2007) Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones. Sediment Geol 195(3–4):135–159. https://doi.org/10.1016/j.sedgeo.2006.07.009
  • 21. Nelson PH (2009) Pore throat sizes in sandstones, tight sandstones, and shales. AAPG Bull 93:329–340
  • 22. Pearson KFRS (1901) LIII on lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572. https://doi.org/10.1080/14786440109462720
  • 23. Puskarczyk E, Krakowska P, Jędrychowski M, Habrat M (2018) A novel approach to the quantitative interpretation of petrophysical parameters using nano-CT: example of Paleozoic carbonates. Acta Geophys 66:453. https://doi.org/10.1007/s11600-018-0219-x
  • 24. Radlinski AP, Ioannidis MA, Hinde AL, Hainbuchner M, Baron M, Rauch H, Kline SR (2004) Angstrom-to-millimeter characterization of sedimentary rock microstructure. J Colloid Interface Sci 274:607–612
  • 25. Sikorska M, Pacześna J (1997) Quartz cementation in Cambrian sandstones on the background of their burial history (Polish part of the East European Craton). Geol Q 41(3):265–272
  • 26. Speight JG (2017) Deep shale oil and gas. CD&W, Laramie
  • 27. Timur A (1968) An investigation of permeability, porosity, and residual water saturation relationships. In: The 9th SPWLA annual logging symposium, paper J
  • 28. Vavra CL, Kaldi JG, Sneider RM (1992) Geological applications of capillary pressure: a review. Am Assoc Pet Geol Bull 76:840–850
  • 29. Wyllie MRJ, Rose WD (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rocks from electrical log data. Pet Trans AIME 189:105–118
  • 30. Zawisza L, Nowak J (2012) Metodyka określania parametrów filtracyjnych skał na podstawie kompleksowej analizy danych geofizyki otworowej, wydawnictwa AGH (in Polish)
  • 31. Zee Ma Y, Moore WR, Gomez E, Clark WJ, Zhang Y (2016) Tight gas sandstone reservoirs, part 1: overview and lithofacies. In: Ma YZ, Holditch S (eds) Handbook of unconventional resources. Schlumberger, Denver, pp 405–427
  • 32. Zhang J, Nie X, Xiao S, Zhang C, Zhang C, Zhang Z (2018) Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log. Acta Geophys 66:191. https://doi.org/10.1007/s11600-018-0134-1
  • 33. Zhu L, Zhang C, Zhang C, Zhou X, Wang J, Wang X (2018) Application of multiboost-KELM algorithm to alleviate the collinearity of log curves for evaluating the abundance of organic matter in marine mud shale reservoirs: a case study in Sichuan Basin. China Acta Geophys 66:983. https://doi.org/10.1007/s11600-018-0180-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b169384-8795-4cf6-a25b-c7f0d8c7d972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.