Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work demonstrates the possibility of producing spherical Ti-6Al-4V Grade 5 alloy powders with superior technological properties compared to those obtained through conventional industrial gas atomization methods for additive manufacturing, by utilizing plasma atomization of a 1.0 mm diameter solid wire. The process employs supersonic plasma jets generated by a DC reverse polarity plasma torch with vortex arc stabilization. The plasma torch has a copper hollow electrode anode and a special diffusive nozzle cathode. Analysis of the particle size distribution of the powder showed the main fraction of -140 μm 96 %wt., and the amount of the finely divided fraction of -63 μm is up to 55-60 %wt. Also, using subsonic jet had been give fraction -250 μm, which is 97 %wt., and the amount of the finely-divided fraction -63 μm does not exceed 30 %wt. The study of the shape and structure properties of Ti 6Al 4V Grade 5 powder showed that the sphericity coefficient reaches up to 0.9, the number of defects in the form of satellites and irregular particles does not exceed 1 %wt. In terms of technological characteristics, Ti 6Al 4V Grade 5 powder obtained by the adopted technique is on par with the industrial method of producing spherical powders for additive manufactuing by the direct polarity plasma torches.
Wydawca
Rocznik
Tom
Strony
434--448
Opis fizyczny
Bibliogr. 77 poz., fig., tab.
Twórcy
autor
- China‑Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing: 363, Changxing Road, Tianhe, Guangzhou, 510650, China
autor
- China‑Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing: 363, Changxing Road, Tianhe, Guangzhou, 510650, China
- E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
Bibliografia
- 1. Nguyen, H., Pramanik, A., Basak, A. et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. Journal of Materials Research and Technology. 2022; (18), 4641–4661. https://doi.org/10.1016/j.jmrt.2022.04.055.
- 2. Del Guercio, G., Galati, M., Saboori, A. Electron beam melting of Ti-6Al-4V lattice structures: correlation between post heat treatment and mechanical properties. Int J Adv Manuf Technol. 2021; (116), 3535–3547. https://doi.org/10.1007/s00170-021-07619-w.
- 3. Kondas, J., Guagliano, M., Bagherifard, S. et al. Cold spray additive manufacturing of Ti6Al4V: Deposition optimization. J Therm Spray Tech 2024; (33), 2672–2685. https://doi.org/10.1007/s11666-024-01855-8.
- 4. Weng, F., Bi, G., Chew, Y. et al. Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire. Int J Miner Metall Mater. 2025; (32), 154–168. https://doi.org/10.1007/s12613-024-3003-8.
- 5. Len, E., Galstian, I., Gustmann, T. et al. Effect of high energy laser processing on defect and structural phase state of titanium products made by additive technologies. Appl. Phys. A 2025; 131, 187. https://doi.org/10.1007/s00339-025-08303-6.
- 6. Gu, Y., Xu, Y., Shi, Y. et al. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology. 2022; (441), 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
- 7. Mao, D., Xie, Y., Meng, X. et al. Strength-ductility materials by engineering a coherent interface at incoherent precipitates. Materials Horizons. 2024; (14), 3408–341920. https://doi.org/10.1039/d4mh00139g.
- 8. Ahn, D. Directed Energy Deposition (DED) Process: State of the Art. Int. J. of Precis. Eng. and Manuf.-Green Tech. 2021; (8), 703–742. https://doi.org/10.1007/s40684-020-00302-7.
- 9. Svetlizky, D., Das, M., Zheng, B. et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today. 2021; (49), 271–295. https://doi.org/10.1016/j.mattod.2021.03.020.
- 10. King, W., Anderson, A., Ferencz, R. et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews. 2015; (2), 041304. https://doi.org/10.1063/1.4937809.
- 11. Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V. et al. Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetalide. Eastern-European Journal of Enterprise Technologies. 2020; (108), 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
- 12. Hryhorenko, G., Adeeva, L., Tunik, A. et al. Structurization of coatings in the plasma arc spraying process using B4C + (Cr, Fe)7C3-cored wires. Powder Metall. Met. Ceram. 2019; (58), 312‒322. https://doi.org/10.1007/s11106-019-00080-1.
- 13. Chen, G., Zhao S., Tan P. et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology. 2018; (333), 38–46. https://doi.org/10.1016/j.powtec.2018.04.013.
- 14. Sun, P., Fang, Z., Zhang, Y. et al. Review of the methods for the production of spherical Ti and Ti alloy powder. JOM. 2017; (69), 1853–1860. https://doi.org/10.1007/s11837-017-2513-5.
- 15. Wang, P., Li, X., Zhou, X. et al. Numerical simulation on metallic droplet deformation and breakup concerning particle morphology and hollow particle formation during gas atomization. Transactions of Nonferrous Metals Society of China. 2024; (34), 2074–2094. https://doi.org/10.1016/S1003-6326(24)66526-X.
- 16. Yodoshi, N., Endo, T., Masahashi, N. Evaluation of porosity in gas-atomized powder by synchrotron X-ray CT and investigation of the effect of gas species, Materials Transactions. 2021; (62), 1549–1555. https://doi.org/10.2320/matertrans.MT-Y2021001.
- 17. Wu, J., Xia, M., Wang, J. et al. Effect of electrode induction melting gas atomization on powder quality: satellite formation mechanism and pressure. Materials. 2023; 16, 2499. https://doi.org/10.3390/ma16062499.
- 18. Zhang, L., Xu, W., Li, Z. et. al. Mechanism of rapidly solidified satellites formation in gas atomized powders: Simulation and characterization. Powder Technology. 2023; (418), 118162. https://doi.org/10.1016/j.powtec.2022.118162.
- 19. Luo, S., Wei, Q., Ouyang, Y. et al. The impact of coaxial gas technology on the morphology of powder by gas atomisation and the additive manufactured mechanical performance. Virtual and Physical Prototyping. 2024; 1, e2375107. https://doi.org/10.1080/17452759.2024.2375107.
- 20. Brika, S., Letenneur, M., Dion, C. et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Additive Manufacturing. 2019; 100929. https://doi.org/10.1016/j.addma.2019.100929.
- 21. Mathias, L., Pinotti, V., Batistão, B. et al. Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification. Journal of Materials Research. 2024; (39), 19–47. https://doi.org/10.1557/s43578-023-01271-8.
- 22. Kan, W., Chiu, L., Lim, C. et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. Journal of Materials Science. 2022; (57), 9818–9865. https://doi.org/10.1007/s10853-022-06990-7.
- 23. Al-Maharma, Y., Patil, S., Markert, B. Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater. Res. Express. 2020; (7), 122001. https://doi.org/10.1088/2053-1591/abcc5d.
- 24. Liu, Y., Zhao, X., Lai, Y. et al. A brief introduction to the selective laser melting of Ti-6Al-4V powders by supreme-speed plasma rotating electrode process. Progress in Natural Science: Materials International. 2020; (30), 94–99. https://doi.org/10.1016/j.pnsc.2019.12.004.
- 25. Li, H., Zhang, S., Chen, Q. et al. High-quality spherical silver alloy powder for laser powder bed fusion using plasma rotating electrode process. Micromachines. 2024; (15), 396. https://doi.org/10.3390/mi15030396.
- 26. Korzhyk, V., Kulak, L., Shevchenko, V. et al. New equipment for production of super hard spherical tungsten carbide and other high-melting compounds using the method of plasma atomization of rotating billet. Materials Science Forum. 2017; (898), 1485–1497. https://doi.org/10.4028/www.scientific.net/msf.898.1485.
- 27. Cui, Y., Zhao, Y., Numata, H. et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technology. 2021; (393), 301–311. https://doi.org/10.1016/j.powtec.2021.07.0624.
- 28. Fan, X., Tian, Q., Chu, X. et al. Microstructure and mechanical properties of Co31.5Cr7Fe30Ni31.5 high-entropy alloy powder produced by plasma rotating electrode process and its applications in additive manufacturing. Journal of Materials Research and Technology. 2024; (31), 1924–1938. https://doi.org/10.1016/j.jmrt.2024.06.217.
- 29. Yurtukan, E., Unal, R. Theoretical and experimental investigation of Ti alloy powder production using low-power plasma torches. Transactions of Nonferrous Metals Society of China. 2022; (32), 175–191. https://doi.org/10.1016/S1003-6326(21)65786-2.
- 30. Prokopov, V., Fialko, N., Sherenkovskaya, G. et al. Effect of the coating porosity on the processes of heat transfer under, gas-thermal atomization. Powder Metall. Met. Ceram. 1993; (32), 118–121. https://doi.org/10.1007/BF00560034.
- 31. Zhang, Q., Yu, D., Liu, F. et al. Modeling on the size of the pre-breaking molten droplet in plasma atomization for controlling the size of the produced powders. Applied Thermal Engineering. 2023; (232), 121031. https://doi.org/10.1016/j.applthermaleng.2023.121031.
- 32. Qiu, J., Yu, D., Qu, Y. et al. In-flight droplet plasma atomization: A novel method for preparing ultrafine spherical powders. Advanced Powder Technology. 2025; (36), 104757. https://doi.org/10.1016/j.apt.2024.104757.
- 33. Boulos, M., Fauchais, P., Pfender, E. Handbook of thermal plasmas. Springer International Publishing. 2016. https://doi.org/10.1007/978-3-319-12183-3.
- 34. Mauer, G. Multiple electrodes and cascaded nozzles: A review of the evolution of modern plasma spray torches. J Therm Spray Tech. 2024; (34), 484–494. https://doi.org/10.1007/s11666-024-01909-x.
- 35. Coudert, J., Planche, M., Fauchais, P. Characterization of DC plasma torch voltage fluctuations. Plasma Chem Plasma Process. 1995; (16), 211–227. https://doi.org/10.1007/BF01512636.
- 36. Duan, Z., Heberlein, J. Arc instabilities in a plasma spray torch. J Therm Spray Tech. 2002; (11), 44–51. https://doi.org/10.1361/105996302770348961.
- 37. Schein, J., Zierhut, J., Dzulko, M. et al. Improved plasma spray torch stability through multi-electrode design, Contrib. Plasma Phys. 2007; (7), 498–504. https://doi.org/10.1002/ctpp.200710064.
- 38. Marquès, J., Forster, G., Schein, J. Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasma Phys. J. 2009; (2), 89–98. https://10.2174/1876534300902010089.
- 39. Perambadur, J., Rat, V., Niane, T. Simulation of the axial III plus plasma torch and its arc fluctuations. J Therm Spray Tech. 2024; (33), 2526–2547. https://doi.org/10.1007/s11666-024-01827-y.
- 40. Zimmermann, S., Mauer, G., Rauwald, K. et al. Characterization of an axial-injection plasma spray torch. J Therm Spray Tech. 2021; (30), 1724–1736. https://doi.org/10.1007/s11666-021-01235-6.
- 41. Dombrovskii, L., Isakaev, E., Senchenko, V. et al. Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temp. 2012; (50), 145–153. https://doi.org/10.1134/S0018151X12020046.
- 42. Yang, I., Choi, M., Nam, J. et al. Experimental and numerical analyses of a hollow electrode plasma torch with inter-electrodes and reversed polarity discharges. J Korean Phys Soc. 2019; (5), 465–472. https://doi.org/10.3938/jkps.74.465.
- 43. Park, S., Kim, D., Kim, M. et al. Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment. Journal of the Korean Physical Society. 2013; (63), 1746–1754. https://doi.org/10.3938/jkps.63.1746.
- 44. Camacho, S. Industrial-worthy plasma torches: State-of-the-art. Pure Appl. Chem. 1988; (60), 619–632. https://doi.org/10.1351/pac198860050619.
- 45. Yin, Z., Yu, D., Wen, Y. et al. Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling. Plasma Science and Technology. 2021; (9), 95402–095402. https://doi.org/10.1088/2058-6272/ac0770.
- 46. Rao, L., Rivard, F., Carabin, P. Thermal plasma torches for metallurgical applications. 4th International Symposium on High‐Temperature Metallurgical Processing. 2013; 57–65. https://doi.org/10.1002/9781118663448.ch8.
- 47. Lyubimov, G., Rakhovskii, V. The cathode spot of a vacuum arc. Soviet Physics Uspekhi. 1978; (21), 693–718. https://doi.org/10.1070/PU1978v021n08ABEH005674.
- 48. Brilhac, J., Pateyron, B., Coudert, J. et al. Study of the dynamic and static behavior of de vortex plasma torches: Part II: well-type cathode. Plasma Chem Plasma Process. 1995; (15), 257–277. https://doi.org/10.1007/BF01459699.
- 49. Beilis, I. Plasma and Spot Phenomena in Electrical Arcs. Springer Nature. (2020).
- 50. Min, H., Cho, H., Hong, S. Numerical analysis and experiment on a plasma torch with hollow electrodes for hazardous waste treatment. Ann NY Acad Sci. 1999; (891), 49–56. https://doi.org/10.1111/j.1749-6632.1999.tb08751.x.
- 51. Yin, Z., Yu, D., Zhang, Q. et al. Experimental and numerical analysis of a reverse-polarity plasma torch for plasma atomization. Plasma Chem Plasma Process. 2021; (41), 1471–1495. https://doi.org/10.1007/s11090-021-10181-8.
- 52. The equipment for supersonic plasma spraying of PLAZER 50-PL, PLAZER 80-PL-S and PLAZER 180-PL-S. http://www.plazer.com.ua/en/plazer-50-pl-plazer-80-pl-s-and-plazer-180-pl-s.html.
- 53. Gadzhiev, M., Kulikov, Y., Son, E. et al. Efficient generator of low-temperature argon plasma with an expanding channel of the output. High Temp. 2020; (58), 12–20. https://doi.org/10.1134/S0018151X2001006X.
- 54. Li, K., Zhu, C., Zhang, Y. et al. Experimental study of the discharge characteristics of a stepped-nozzle arc plasma torch. Plasma Chem Plasma Process. 2024; (44), 1469–1492. https://doi.org/10.1007/s11090-024-10481-9.
- 55. Gadzhiev, M., Kulikov, Y., Panov, V. et al. Supersonic plasmatron nozzle profiling with the real properties of high temperature working gas. High Temp. 2016; (54), 38–45. https://doi.org/10.1134/S0018151X15060073.
- 56. Su, G., Shi, Y., Li, G. et al. Improving the deposition efficiency and mechanical properties of additive manufactured Inconel 625 through hot wire laser metal deposition. Journal of Materials Processing Technology. 2023; (322), 118175. https://doi.org/10.1016/j.jmatprotec.2023.118175.
- 57. Gu, Y., Xu, Y., Shi, Y. et al. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology. 2022; (441), 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
- 58. Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V. et al. Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetal¬lide. Eastern-European Journal of Enterprise Technologies. 2020; (108), 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
- 59. Skorokhod, A., Sviridova, I., Korzhik, V. The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mekhanika Kompozitnykh Materialov. 1994; 30(4), 455–463.
- 60. Prokopov, V., Fialko, N., Sherenkovskaya, G. et al. Effect of the coating porosity on the processes of heat transfer under, gas-thermal atomization. Powder Metall. Met. Ceram. 1993; (32), 118–121. https://doi.org/10.1007/BF00560034.
- 61. Fialko, N., Prokopov, V., Meranova, N. et al. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov. 1994; (2), 59–67.
- 62. Fialko, N., Prokopov, V., Meranova, N. et al. Thermal physics of gas thermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov. 1993; (4), 83–93.
- 63. Jing, H., Yu, Shi, Gang, Z. et al. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation. J. Manufacturing Processes. 2022; (83), 49‒59. https://doi.org/10.1016/j.jmapro.2022.08.031.
- 64. Skorokhod, A., Sviridova, I., Korzhik, V. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. Mekhanika Kompozitnykh Materialov. 1994; (30), 455–463.
- 65. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies. 2021; (112), 21–26. https://doi.org/10.15587/1729-4061.2021.236915.
- 66. Korzhik, V. Theoretical analysis of amorphization conditions for metallic alloys under gas-thermal spraying. III. Transformations in the amorphized alloy under building-up of coatings. Powder Metall. Met. Ceram. 1992; (31), 943–948. https://doi.org/10.1007/BF00797621.
- 67. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European Journal of Enterprise Technologies. 2021; (114), 34–39. https://doi.org/10.15587/1729-4061.2021.245274.
- 68. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern-European Journal of Enterprise Technologies. 2022; (116), 25–30. https://doi.org/10.15587/1729-4061.2022.255830.
- 69. Gu, Y., Zhang, W., Xu, Y. et al. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad. 2022; (6), 90. https://doi.org/10.1038/s41529-022-00300-x.
- 70. Zhukov, M., Zasypkin, I. Thermal Plasma Torches. Cambridge International Science Publishing Ltd. 2007.
- 71. Landau, L., Lifshitz, E. Physical Kinetics. Pergamon Press Ltd. 1981.
- 72. Bobzin, K., Heinemann, H., Dokhanchi, A. Numerical and experimental analysis of a solid shroud in multi-arc plasma spraying. J Therm Spray Tech. 2024; (33), 1191–1204. https://doi.org/10.1007/s11666-024-01715-5.
- 73. Wen, K., Liu, X., Liu, M. et al. Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying. Surface and Coatings Technology. 2019; (371), 312–321. https://doi.org/10.1016/j.surfcoat.2019.04.053.
- 74. Guo, R., Xu, L., Zong, B. et al. Characterization of prealloyed Ti–6Al–4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall. Sin. 2017; (30), 735–744. https://doi.org/10.1007/s40195-017-0540-4.
- 75. Höganäs. Titanium alloy AM powders. https://www.hoganas.com/en/powder-technologies/additive-manufacturing-metal-powders/3d-printing-metal-powders/titanium-alloy-am-powders/.
- 76. C-SEM. Titanium products. https://en.c-semt.com/ti/.
- 77. AP&C. Titanium Alloys – Ti-6Al-4V Grade 5. https://www.advancedpowders.com/powders/titanium-alloys/ti-6al-4v-grade-5/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b11e661-5b07-424e-aa98-d78e583b9f70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.