PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of the possibility of obtaining spherical powders of titanium alloy Ti 6Al 4V by supersonic reverse polarity plasma torch for use in additive manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work demonstrates the possibility of producing spherical Ti-6Al-4V Grade 5 alloy powders with superior technological properties compared to those obtained through conventional industrial gas atomization methods for additive manufacturing, by utilizing plasma atomization of a 1.0 mm diameter solid wire. The process employs supersonic plasma jets generated by a DC reverse polarity plasma torch with vortex arc stabilization. The plasma torch has a copper hollow electrode anode and a special diffusive nozzle cathode. Analysis of the particle size distribution of the powder showed the main fraction of -140 μm 96 %wt., and the amount of the finely divided fraction of -63 μm is up to 55-60 %wt. Also, using subsonic jet had been give fraction -250 μm, which is 97 %wt., and the amount of the finely-divided fraction -63 μm does not exceed 30 %wt. The study of the shape and structure properties of Ti 6Al 4V Grade 5 powder showed that the sphericity coefficient reaches up to 0.9, the number of defects in the form of satellites and irregular particles does not exceed 1 %wt. In terms of technological characteristics, Ti 6Al 4V Grade 5 powder obtained by the adopted technique is on par with the industrial method of producing spherical powders for additive manufactuing by the direct polarity plasma torches.
Twórcy
autor
  • China‑Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing: 363, Changxing Road, Tianhe, Guangzhou, 510650, China
  • China‑Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing: 363, Changxing Road, Tianhe, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute (PEWI), National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
Bibliografia
  • 1. Nguyen, H., Pramanik, A., Basak, A. et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. Journal of Materials Research and Technology. 2022; (18), 4641–4661. https://doi.org/10.1016/j.jmrt.2022.04.055.
  • 2. Del Guercio, G., Galati, M., Saboori, A. Electron beam melting of Ti-6Al-4V lattice structures: correlation between post heat treatment and mechanical properties. Int J Adv Manuf Technol. 2021; (116), 3535–3547. https://doi.org/10.1007/s00170-021-07619-w.
  • 3. Kondas, J., Guagliano, M., Bagherifard, S. et al. Cold spray additive manufacturing of Ti6Al4V: Deposition optimization. J Therm Spray Tech 2024; (33), 2672–2685. https://doi.org/10.1007/s11666-024-01855-8.
  • 4. Weng, F., Bi, G., Chew, Y. et al. Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire. Int J Miner Metall Mater. 2025; (32), 154–168. https://doi.org/10.1007/s12613-024-3003-8.
  • 5. Len, E., Galstian, I., Gustmann, T. et al. Effect of high energy laser processing on defect and structural phase state of titanium products made by additive technologies. Appl. Phys. A 2025; 131, 187. https://doi.org/10.1007/s00339-025-08303-6.
  • 6. Gu, Y., Xu, Y., Shi, Y. et al. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology. 2022; (441), 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
  • 7. Mao, D., Xie, Y., Meng, X. et al. Strength-ductility materials by engineering a coherent interface at incoherent precipitates. Materials Horizons. 2024; (14), 3408–341920. https://doi.org/10.1039/d4mh00139g.
  • 8. Ahn, D. Directed Energy Deposition (DED) Process: State of the Art. Int. J. of Precis. Eng. and Manuf.-Green Tech. 2021; (8), 703–742. https://doi.org/10.1007/s40684-020-00302-7.
  • 9. Svetlizky, D., Das, M., Zheng, B. et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today. 2021; (49), 271–295. https://doi.org/10.1016/j.mattod.2021.03.020.
  • 10. King, W., Anderson, A., Ferencz, R. et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews. 2015; (2), 041304. https://doi.org/10.1063/1.4937809.
  • 11. Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V. et al. Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetalide. Eastern-European Journal of Enterprise Technologies. 2020; (108), 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
  • 12. Hryhorenko, G., Adeeva, L., Tunik, A. et al. Structurization of coatings in the plasma arc spraying process using B4C + (Cr, Fe)7C3-cored wires. Powder Metall. Met. Ceram. 2019; (58), 312‒322. https://doi.org/10.1007/s11106-019-00080-1.
  • 13. Chen, G., Zhao S., Tan P. et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology. 2018; (333), 38–46. https://doi.org/10.1016/j.powtec.2018.04.013.
  • 14. Sun, P., Fang, Z., Zhang, Y. et al. Review of the methods for the production of spherical Ti and Ti alloy powder. JOM. 2017; (69), 1853–1860. https://doi.org/10.1007/s11837-017-2513-5.
  • 15. Wang, P., Li, X., Zhou, X. et al. Numerical simulation on metallic droplet deformation and breakup concerning particle morphology and hollow particle formation during gas atomization. Transactions of Nonferrous Metals Society of China. 2024; (34), 2074–2094. https://doi.org/10.1016/S1003-6326(24)66526-X.
  • 16. Yodoshi, N., Endo, T., Masahashi, N. Evaluation of porosity in gas-atomized powder by synchrotron X-ray CT and investigation of the effect of gas species, Materials Transactions. 2021; (62), 1549–1555. https://doi.org/10.2320/matertrans.MT-Y2021001.
  • 17. Wu, J., Xia, M., Wang, J. et al. Effect of electrode induction melting gas atomization on powder quality: satellite formation mechanism and pressure. Materials. 2023; 16, 2499. https://doi.org/10.3390/ma16062499.
  • 18. Zhang, L., Xu, W., Li, Z. et. al. Mechanism of rapidly solidified satellites formation in gas atomized powders: Simulation and characterization. Powder Technology. 2023; (418), 118162. https://doi.org/10.1016/j.powtec.2022.118162.
  • 19. Luo, S., Wei, Q., Ouyang, Y. et al. The impact of coaxial gas technology on the morphology of powder by gas atomisation and the additive manufactured mechanical performance. Virtual and Physical Prototyping. 2024; 1, e2375107. https://doi.org/10.1080/17452759.2024.2375107.
  • 20. Brika, S., Letenneur, M., Dion, C. et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Additive Manufacturing. 2019; 100929. https://doi.org/10.1016/j.addma.2019.100929.
  • 21. Mathias, L., Pinotti, V., Batistão, B. et al. Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification. Journal of Materials Research. 2024; (39), 19–47. https://doi.org/10.1557/s43578-023-01271-8.
  • 22. Kan, W., Chiu, L., Lim, C. et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. Journal of Materials Science. 2022; (57), 9818–9865. https://doi.org/10.1007/s10853-022-06990-7.
  • 23. Al-Maharma, Y., Patil, S., Markert, B. Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater. Res. Express. 2020; (7), 122001. https://doi.org/10.1088/2053-1591/abcc5d.
  • 24. Liu, Y., Zhao, X., Lai, Y. et al. A brief introduction to the selective laser melting of Ti-6Al-4V powders by supreme-speed plasma rotating electrode process. Progress in Natural Science: Materials International. 2020; (30), 94–99. https://doi.org/10.1016/j.pnsc.2019.12.004.
  • 25. Li, H., Zhang, S., Chen, Q. et al. High-quality spherical silver alloy powder for laser powder bed fusion using plasma rotating electrode process. Micromachines. 2024; (15), 396. https://doi.org/10.3390/mi15030396.
  • 26. Korzhyk, V., Kulak, L., Shevchenko, V. et al. New equipment for production of super hard spherical tungsten carbide and other high-melting compounds using the method of plasma atomization of rotating billet. Materials Science Forum. 2017; (898), 1485–1497. https://doi.org/10.4028/www.scientific.net/msf.898.1485.
  • 27. Cui, Y., Zhao, Y., Numata, H. et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technology. 2021; (393), 301–311. https://doi.org/10.1016/j.powtec.2021.07.0624.
  • 28. Fan, X., Tian, Q., Chu, X. et al. Microstructure and mechanical properties of Co31.5Cr7Fe30Ni31.5 high-entropy alloy powder produced by plasma rotating electrode process and its applications in additive manufacturing. Journal of Materials Research and Technology. 2024; (31), 1924–1938. https://doi.org/10.1016/j.jmrt.2024.06.217.
  • 29. Yurtukan, E., Unal, R. Theoretical and experimental investigation of Ti alloy powder production using low-power plasma torches. Transactions of Nonferrous Metals Society of China. 2022; (32), 175–191. https://doi.org/10.1016/S1003-6326(21)65786-2.
  • 30. Prokopov, V., Fialko, N., Sherenkovskaya, G. et al. Effect of the coating porosity on the processes of heat transfer under, gas-thermal atomization. Powder Metall. Met. Ceram. 1993; (32), 118–121. https://doi.org/10.1007/BF00560034.
  • 31. Zhang, Q., Yu, D., Liu, F. et al. Modeling on the size of the pre-breaking molten droplet in plasma atomization for controlling the size of the produced powders. Applied Thermal Engineering. 2023; (232), 121031. https://doi.org/10.1016/j.applthermaleng.2023.121031.
  • 32. Qiu, J., Yu, D., Qu, Y. et al. In-flight droplet plasma atomization: A novel method for preparing ultrafine spherical powders. Advanced Powder Technology. 2025; (36), 104757. https://doi.org/10.1016/j.apt.2024.104757.
  • 33. Boulos, M., Fauchais, P., Pfender, E. Handbook of thermal plasmas. Springer International Publishing. 2016. https://doi.org/10.1007/978-3-319-12183-3.
  • 34. Mauer, G. Multiple electrodes and cascaded nozzles: A review of the evolution of modern plasma spray torches. J Therm Spray Tech. 2024; (34), 484–494. https://doi.org/10.1007/s11666-024-01909-x.
  • 35. Coudert, J., Planche, M., Fauchais, P. Characterization of DC plasma torch voltage fluctuations. Plasma Chem Plasma Process. 1995; (16), 211–227. https://doi.org/10.1007/BF01512636.
  • 36. Duan, Z., Heberlein, J. Arc instabilities in a plasma spray torch. J Therm Spray Tech. 2002; (11), 44–51. https://doi.org/10.1361/105996302770348961.
  • 37. Schein, J., Zierhut, J., Dzulko, M. et al. Improved plasma spray torch stability through multi-electrode design, Contrib. Plasma Phys. 2007; (7), 498–504. https://doi.org/10.1002/ctpp.200710064.
  • 38. Marquès, J., Forster, G., Schein, J. Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasma Phys. J. 2009; (2), 89–98. https://10.2174/1876534300902010089.
  • 39. Perambadur, J., Rat, V., Niane, T. Simulation of the axial III plus plasma torch and its arc fluctuations. J Therm Spray Tech. 2024; (33), 2526–2547. https://doi.org/10.1007/s11666-024-01827-y.
  • 40. Zimmermann, S., Mauer, G., Rauwald, K. et al. Characterization of an axial-injection plasma spray torch. J Therm Spray Tech. 2021; (30), 1724–1736. https://doi.org/10.1007/s11666-021-01235-6.
  • 41. Dombrovskii, L., Isakaev, E., Senchenko, V. et al. Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temp. 2012; (50), 145–153. https://doi.org/10.1134/S0018151X12020046.
  • 42. Yang, I., Choi, M., Nam, J. et al. Experimental and numerical analyses of a hollow electrode plasma torch with inter-electrodes and reversed polarity discharges. J Korean Phys Soc. 2019; (5), 465–472. https://doi.org/10.3938/jkps.74.465.
  • 43. Park, S., Kim, D., Kim, M. et al. Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment. Journal of the Korean Physical Society. 2013; (63), 1746–1754. https://doi.org/10.3938/jkps.63.1746.
  • 44. Camacho, S. Industrial-worthy plasma torches: State-of-the-art. Pure Appl. Chem. 1988; (60), 619–632. https://doi.org/10.1351/pac198860050619.
  • 45. Yin, Z., Yu, D., Wen, Y. et al. Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling. Plasma Science and Technology. 2021; (9), 95402–095402. https://doi.org/10.1088/2058-6272/ac0770.
  • 46. Rao, L., Rivard, F., Carabin, P. Thermal plasma torches for metallurgical applications. 4th International Symposium on High‐Temperature Metallurgical Processing. 2013; 57–65. https://doi.org/10.1002/9781118663448.ch8.
  • 47. Lyubimov, G., Rakhovskii, V. The cathode spot of a vacuum arc. Soviet Physics Uspekhi. 1978; (21), 693–718. https://doi.org/10.1070/PU1978v021n08ABEH005674.
  • 48. Brilhac, J., Pateyron, B., Coudert, J. et al. Study of the dynamic and static behavior of de vortex plasma torches: Part II: well-type cathode. Plasma Chem Plasma Process. 1995; (15), 257–277. https://doi.org/10.1007/BF01459699.
  • 49. Beilis, I. Plasma and Spot Phenomena in Electrical Arcs. Springer Nature. (2020).
  • 50. Min, H., Cho, H., Hong, S. Numerical analysis and experiment on a plasma torch with hollow electrodes for hazardous waste treatment. Ann NY Acad Sci. 1999; (891), 49–56. https://doi.org/10.1111/j.1749-6632.1999.tb08751.x.
  • 51. Yin, Z., Yu, D., Zhang, Q. et al. Experimental and numerical analysis of a reverse-polarity plasma torch for plasma atomization. Plasma Chem Plasma Process. 2021; (41), 1471–1495. https://doi.org/10.1007/s11090-021-10181-8.
  • 52. The equipment for supersonic plasma spraying of PLAZER 50-PL, PLAZER 80-PL-S and PLAZER 180-PL-S. http://www.plazer.com.ua/en/plazer-50-pl-plazer-80-pl-s-and-plazer-180-pl-s.html.
  • 53. Gadzhiev, M., Kulikov, Y., Son, E. et al. Efficient generator of low-temperature argon plasma with an expanding channel of the output. High Temp. 2020; (58), 12–20. https://doi.org/10.1134/S0018151X2001006X.
  • 54. Li, K., Zhu, C., Zhang, Y. et al. Experimental study of the discharge characteristics of a stepped-nozzle arc plasma torch. Plasma Chem Plasma Process. 2024; (44), 1469–1492. https://doi.org/10.1007/s11090-024-10481-9.
  • 55. Gadzhiev, M., Kulikov, Y., Panov, V. et al. Supersonic plasmatron nozzle profiling with the real properties of high temperature working gas. High Temp. 2016; (54), 38–45. https://doi.org/10.1134/S0018151X15060073.
  • 56. Su, G., Shi, Y., Li, G. et al. Improving the deposition efficiency and mechanical properties of additive manufactured Inconel 625 through hot wire laser metal deposition. Journal of Materials Processing Technology. 2023; (322), 118175. https://doi.org/10.1016/j.jmatprotec.2023.118175.
  • 57. Gu, Y., Xu, Y., Shi, Y. et al. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology. 2022; (441), 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
  • 58. Kvasnytskyi, V., Korzhyk, V., Kvasnytskyi, V. et al. Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetal¬lide. Eastern-European Journal of Enterprise Technologies. 2020; (108), 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
  • 59. Skorokhod, A., Sviridova, I., Korzhik, V. The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mekhanika Kompozitnykh Materialov. 1994; 30(4), 455–463.
  • 60. Prokopov, V., Fialko, N., Sherenkovskaya, G. et al. Effect of the coating porosity on the processes of heat transfer under, gas-thermal atomization. Powder Metall. Met. Ceram. 1993; (32), 118–121. https://doi.org/10.1007/BF00560034.
  • 61. Fialko, N., Prokopov, V., Meranova, N. et al. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov. 1994; (2), 59–67.
  • 62. Fialko, N., Prokopov, V., Meranova, N. et al. Thermal physics of gas thermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov. 1993; (4), 83–93.
  • 63. Jing, H., Yu, Shi, Gang, Z. et al. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation. J. Manufacturing Processes. 2022; (83), 49‒59. https://doi.org/10.1016/j.jmapro.2022.08.031.
  • 64. Skorokhod, A., Sviridova, I., Korzhik, V. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. Mekhanika Kompozitnykh Materialov. 1994; (30), 455–463.
  • 65. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies. 2021; (112), 21–26. https://doi.org/10.15587/1729-4061.2021.236915.
  • 66. Korzhik, V. Theoretical analysis of amorphization conditions for metallic alloys under gas-thermal spraying. III. Transformations in the amorphized alloy under building-up of coatings. Powder Metall. Met. Ceram. 1992; (31), 943–948. https://doi.org/10.1007/BF00797621.
  • 67. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European Journal of Enterprise Technologies. 2021; (114), 34–39. https://doi.org/10.15587/1729-4061.2021.245274.
  • 68. Fialko, N., Dinzhos, R., Sherenkovskii, J. et al. Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern-European Journal of Enterprise Technologies. 2022; (116), 25–30. https://doi.org/10.15587/1729-4061.2022.255830.
  • 69. Gu, Y., Zhang, W., Xu, Y. et al. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad. 2022; (6), 90. https://doi.org/10.1038/s41529-022-00300-x.
  • 70. Zhukov, M., Zasypkin, I. Thermal Plasma Torches. Cambridge International Science Publishing Ltd. 2007.
  • 71. Landau, L., Lifshitz, E. Physical Kinetics. Pergamon Press Ltd. 1981.
  • 72. Bobzin, K., Heinemann, H., Dokhanchi, A. Numerical and experimental analysis of a solid shroud in multi-arc plasma spraying. J Therm Spray Tech. 2024; (33), 1191–1204. https://doi.org/10.1007/s11666-024-01715-5.
  • 73. Wen, K., Liu, X., Liu, M. et al. Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying. Surface and Coatings Technology. 2019; (371), 312–321. https://doi.org/10.1016/j.surfcoat.2019.04.053.
  • 74. Guo, R., Xu, L., Zong, B. et al. Characterization of prealloyed Ti–6Al–4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall. Sin. 2017; (30), 735–744. https://doi.org/10.1007/s40195-017-0540-4.
  • 75. Höganäs. Titanium alloy AM powders. https://www.hoganas.com/en/powder-technologies/additive-manufacturing-metal-powders/3d-printing-metal-powders/titanium-alloy-am-powders/.
  • 76. C-SEM. Titanium products. https://en.c-semt.com/ti/.
  • 77. AP&C. Titanium Alloys – Ti-6Al-4V Grade 5. https://www.advancedpowders.com/powders/titanium-alloys/ti-6al-4v-grade-5/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b11e661-5b07-424e-aa98-d78e583b9f70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.