Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Teoretyczne podejście do określania emisyjności materiałów stałych i jej porównanie z badaniami eksperymentalnymi na przykładzie stali proszkowej316L
Języki publikacji
Abstrakty
The work used Maxwell's electromagnetic theory to quantitatively describe the emissivity of solid materials through electrical resistivity and temperature. An equation is proposed for recalculating the emissivity of smooth surfaces into powdery or rough surfaces. The obtained theoretical characteristics of the change in the emissivity of 316L powder steel were compared with experimental ones. As a result of the comparison, it was established that the experimental results obtained correlate with theoretical calculations and do not go beyond the limits of the expanded uncertainty of measurement.
W pracy wykorzystano teorię elektromagnetyczną Maxwella do ilościowego opisania emisyjności materiałów stałych poprzez oporność elektryczną i temperaturę. Zaproponowano równanie umożliwiające przeliczenie emisyjności gładkich powierzchni na sypkie lub szorstkie powierzchnie. Uzyskane teoretyczne charakterystyki zmiany emisyjności stali proszkowej 316L porównano z doświadczalnymi. W wyniku porównania ustalono, że wyniki eksperymentalne uzyskały korelację z obliczeniami teoretycznymi i nie wykraczają poza granice rozszerzonej niepewności pomiaru.
Słowa kluczowe
Rocznik
Tom
Strony
5--8
Opis fizyczny
Bibliogr. 21 poz., fot., wykr.
Twórcy
autor
- The University of Texas at Austin, Walker Department of Mechanical Engineering, Austin, United States of America
autor
- The University of Texas at Austin, Walker Department of Mechanical Engineering, Austin, United States of America
autor
- The University of Texas at Austin, Walker Department of Mechanical Engineering, Austin, United States of America
Bibliografia
- [1] AISI Type 316L Stainless Steel [https://www.matweb.com/search/datasheet_print.aspx?matguid=1336be6d0c594b55afb5ca8bf1f3e042].
- [2] Boley C. D. et al.: Metal powder absorptivity: modeling and experiment. Applied optics 55(23), 2016, 6496–6500.
- [3] Cai Y. et al.: A review of in-situ monitoring and process control system in metal-based laser additive manufacturing. Journal of Manufacturing Systems 70, 2023, 309–326.
- [4] Gusarov A. V. et al.: Normal-directional and normal-hemispherical reflectances of micron-and submicron-sized powder beds at 633 and 790 nm. Journal of applied physics 99(11), 2006.
- [5] Gusarov A. V.: Radiative transfer, absorption, and reflection by metal powder beds in laser powder-bed processing. Journal of Quantitative Spectroscopy and Radiative Transfer 257, 2020, 107366.
- [6] Modest M. F., Mazumder S.: Radiative heat transfer. Academic press, 2021.
- [7] Mohr G. et al.: Experimental determination of the emissivity of powder layers and bulk material in laser powder bed fusion using infrared thermography and thermocouples. Metals 10(11), 2020, 1546.
- [8] Palik E. D.: Handbook of optical constants of solids. Academic press, 1998.
- [9] Setién-Fernández I. et al.: Spectral emissivity of copper and nickel in the mid-infrared range between 250 and 900 C. International Journal of Heat and Mass Transfer 71, 2014, 549–554.
- [10] Shvarev K. M., Baum B. A.: Estimation of radiative characteristics of metals in the framework of classical electronic theory. Soviet Physics Journal 21(1), 1978, 1–4.
- [11] Son E.: Measurement of Flame Temperature by the Spectral-Line Reversal Method. In Physical Mechanics. Begell House, 2012.
- [12] Tilley R. J.: Colour and the optical properties of materials. John Wiley & Sons, 2020.
- [13] Vasilevskyi O. M., Koval M., Kravets S.: Indicators of reproducibility and suitability for assessing the quality of production services. Acta Imeko 10(4), 2021, 54–61.
- [14] Vasilevskyi O. M.: Advanced mathematical model of measuring the starting torque motors. Technical Electrodynamics 6, 2013, 76–81.
- [15] Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta Imeko 10(2), 2021, 199–203.
- [16] Vollmer M., Möllmann, K. P.: Infrared Thermal Imaging: Fundamentals, Research and Applications. John Wiley & Sons, 2018.
- [17] Vollmer M.: Infrared thermal imaging. In Computer Vision: A Reference Guide. Cham: Springer International Publishing, 2020.
- [18] Wang J. et al.: Emissivity calculation for a finite circular array of pyramidal absorbers based on Kirchhoff's law of thermal radiation. IEEE transactions on antennas and propagation 58(4), 2010, 1173–1180.
- [19] Wang R. et al.: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform. Additive Manufacturing 66, 2023, 103449.
- [20] Watanabe H. et al.: Spectral emissivity measurements. In Experimental Methods in the Physical Sciences 46, 2014, 333–366.
- [21] Zhang Z. M., Lee B. J.: Theory of thermal radiation and radiative properties. Experimental Methods in the Physical Sciences 42, 2009, 73–132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b1177e6-e5d4-4a7c-ac18-cf2e3a315560