PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mass transfer analysis of two-phase flow in a suspension of microorganisms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of present work is to investigate the mass transfer of steady incompressible hydromagnetic fluid near the stagnation point with deferment of dust particles over a stretching surface. Most researchers tried to improve the mass transfer by inclusion of cross-diffusion or dust particles due to their vast applications in industrial processes, extrusion process, chemical processing, manufacturing of various types of liquid drinks and in various engineering treatments. To encourage the mass transport phenomena in this study we incorporated dust with microorganisms. Conservation of mass, momentum, concentration and density of microorganisms are used in relevant flow equations. The arising system of nonlinear partial differential equations is transformed into nonlinear ordinary differential equations. The numerical solutions are obtained by the Runge-Kutta based shooting technique and the local Sherwood number is computed for various values of the physical governing parameters (Lewis number, Peclet number, Eckert number). An important finding of present work is that larger values of these parameters encourage the mass transfer rate, and the motile organisms density profiles are augmented with the larger values of fluid particle interaction parameter with reference to bioconvection, bioconvection Lewis number, and dust particle concentration parameter..
Rocznik
Strony
175--192
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Department of Computer Science, Kristu Jayanti College (Autonomous), Bangalore, 560049, India
  • Department of Mathematics, Annamacharya Institute of Technology and Sciences, Rajampet, 516126, India
  • Department of Mathematics, Sri Venkateswara University, Tirupati, India
autor
  • Department of Mathematics, GITAM School of Science, GITAM University, Bangalore, 562163, India
autor
  • Department of Mathematics, Sri Venkateswara University, Tirupati, India
Bibliografia
  • [1] Hillesdon A.J., Pedley T.J., Kessler J.O.: The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57(1995), 2, 299305–303344.
  • [2] Hill N.A., Bees M.A.: Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14(2002), 8, 2598–2605, doi:10.1063/1.1458003.
  • [3] Pedley T.J.: Instability of uniform micro-organism suspensions revisited. J. Fluid Mech. 647(2010), 335–359. doi:10.1017/S0022112010000108
  • [4] Raju C.S.K., Mainul M., Sivasankar T.: Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv. Powder Technol. 28(2016), 2, 575–583. doi:10.1016/j.apt.2016.10.026
  • [5] Latiff N.A., Uddin M.J., Beg O.A., Ismail A.I.: Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet. J. Nanometer. Nanoengi. Nanosyst. 230(2015), 4, 177-187, doi:10.1177/1740349915613817
  • [6] Makinde O.D., Animasaun I.L.: International Journal of Thermal Sciences Bioconvection in MHD nano fluidflow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109(2016) 159–171. doi:10.1016/j.ijthermalsci.2016.06.003
  • [7] Aziz A., Khan W.A., Pop I.: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano fluid containing gyrotactic microorganisms. Int. J. Therm. Sci. 56(2012), 48–57. doi:10.1016/j.ijthermalsci.2012.01.011
  • [8] Alsaedi A., Khan M.I., Farooq M., Gull N., Hayat T.: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Adv. Powder Technol. 28(2017), 288–298. doi:10.1016/j.apt.2016.10.002
  • [9] Kuznetsov A.V.: Bio-thermal convection induced by two different species of microorganisms. Int. Commun. Heat Mass 38(2011), 5, 548–553. doi:10.1016/j.icheatmasstransfer.2011.02.006
  • [10] Khan M.I., Waqas M., Hayat T., Imran M., Alsaedi A.: International Journal of Mechanical Sciences Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. Int. J. Mech. Sci. 131–132(2017), 426–434. doi:10.1016/j.ijmecsci.2017.07.009
  • [11] Sakiadis B.C.: Boundary layer behavior on continuous solid surfaces: II Boundary layer on a continuous flat Surface. AIChE J. 7(1961), 2, 221–225.
  • [12] Crane L.J.: Flow past a stretching plate. ZAMP 21(1970), 645–647.
  • [13] Ishak A., Nazar R., Pop I.: Heat transfer over a stretching surface with variable heat flux in micro polar fluids. Phys. Lett. A. 372(2008), 5, 559–561.
  • [14] P. Ram, Kumar V.: Rotationally symmetric ferrofluid flow and heat transfer in porous medium with variable viscosity and viscous dissipation. J. Appl. Fluid Mech. 7(2014), 2, 357–366.
  • [15] Raju C.S.K., Sandeep N., Jayachandra Babu M., Sugunamma V.: Dual solutions for three-dimensional MHD flow of a nanofluid over a nonlinearly permeable stretching sheet. Alexandria Eng. J. 55(2016), 151–162. doi:10.1016/j.aej.2015.12.017
  • [16] Mamatha S.U., Raju C.S.K., Madhavi G., Mahesha: Unsteady 3D MHD Carreau and Casson fluids over a stretching sheet with non-Uniform heat source/sink. Chem. Process Eng. Res. 52(2017), 10–23.
  • [17] Ram P., Joshi V.K., Sharma K., Walia M., Yadav N.: Variable viscosity effects on time dependent magnetic nanofluid flow past a stretchable rotating plate. Open Physics 14(2016), 1, 651–658.
  • [18] Saffman P.G.: On the stability of a laminar flow of a dusty gas. J. Fluid Mechanics 131(1962), 1, 20–128.
  • [19] Agranat V.M.: Effect of pressure gradient of friction and heat transfer in a dusty boundary layer. Fluid Dyn. 23(1988), 5, 729–732.
  • [20] Krupa Lakshmi K.L.,Gireesha B.J., Gorla Rama S.R., Mahantesh B.: Twophase boundary layer flow, heat and mass transfer of a dusty liquid past a stretching sheet with shermal radiation. Int J. Ind. Math. 8(2016), 3, 279–292.
  • [21] Mamatha S.U., Mahesha, Raju C.S.K.: Multiple slips onmagnetohydrodrodynamic Carreau Dustynano fluid over a stretched surface with Cattaneo-Christov heat flux. J. Nanofluids 6(2017), 1074–1081.
  • [22] Li Z., Sheikholeslami M., Shafee A., Saleem S., Chamkha Ali J.: Effect of dispersing nanoparticles on solidification process in existence of Lorenz forces in a permeable media. J. Mol. Liq. 266(2018), 181–193.
  • [23] Mamatha Upadhya S., Raju C.S.K., Saleem S., Alderremy A.A., Mahesha: Modified Fourier heat flux on MHD flow over stretched cylinder filled with Dust, Graphene and silver nanoparticles. Results Phys. 9(2018), 1377–1385.
  • [24] Li Z., Sheikholeslami M., Chamkha Ali J., Raizah Z.A., Saleem S.: Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput. Methods Appl. M. 338(2018), 618–633.
  • [25] Abbas N., S. Saleem, Nadeem S., Alderremy A.A., Khan A.U.: On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 9(2018), 1224–1232.
  • [26] Nadeem S., Khan A.U., Saleem S.: A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. Eur. Phys. J. Plus 131(2016), 261.
  • [27] Nadeem S., Saleem S.: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. Int. J. Heat Mass Tran. 85(2015), 1041-1048.
  • [28] Saleem S., Nadeem S., Rashidi M.M., Raju C.S.K.: An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst. Technol. https://doi.org/10.1007/s00542-018-3996-x(2018).
  • [29] Sheikholeslami M., Ghasemi A., Li Z., Shafee A., Saleem S.: Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int. J. Heat Mass Tran. 126(2018), A, 1252–1264.
  • [30] Durga Prasad P., Raju C.S.K., Varma S.V.K., Shehzad S.A., Madaki A.G.: Cross diffusion and multiple slips on MHD Carreau fluid in a suspension of microorganisms over a variable thickness sheet. J. Braz. Soc. Mech. Sci. 40(2018), 256.
  • [31] Ramesh G.K., Gireesha B.J., Bagewadi C.S.: MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink. Int J. Heat Mass Tran. 55(2012), 4900–4907.
  • [32] Phool Singh, Nagender Singh Tomer, Sandeep Kumar, Deepa Sinha: Effect of radiation and porosity parameter on magnetohydrodrodynamic flow due to stretching sheet in porous media. Int. J. Inform. Math. Sci. 3(2010)160-166.
  • [33] Roymahapatra T.,Gupta A.S.: Heat transfer in stagnation point flow towards a stretching sheet. Heat Mass Transfer 38(2002), 517–521.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b09ecdb-d326-4673-b2d4-99e2740e1a38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.