PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospection for copper mineralization with contribution of remote sensing, geochemical and mineralographical data in Abhar 1:100,000 sheet, NW Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poszukiwania zasobów rud miedzi z zastosowaniem zdalnych technik wykorzystujących dane geochemiczne i mineralogiczne w pokładzie geologicznym Abhar 1:100,000 w północno-zachodnim Iranie
Języki publikacji
EN
Abstrakty
EN
Abhar 1:100,000 sheet is located within the Cenozoic Tarom volcano-plutonic belt, NW Iran. The present study is based on the integration of remote sensing techniques on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data analysis consisting of stream sediment and lithogeochemical samples, within geological field observations and mineralographical studies to identify Cu prospect. On ASTER data; using a number of selected methods including band ratio, Least Square Fit (LS-Fit) and Minimum Noise Fraction (MNF) distinguished alternation zones. These methods revealed that three types of alterations: argillic, phyllic, and iron oxide zones occurring at the NE and SE of Abhar sheet, while the propylitic and silica zones are developed in NW and SW of the studied area. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques that two NW-SE and NE-SW major trends were determined. Geochemical anomalies were separated by number-size (N-S) method. Interpretation of N-S log-log plots of Cu in the area may be a result of the three steps of enrichment, i.e., mineralization and later dispersions. Field checks and Mineralgraphical studies also confirm the existence of suitable copper mineralization.
PL
Pokład geologiczny Abhar 1:100,100 zlokalizowany jest w obrębie kenozoicznego pasa skał magmowych pochodzenia wulkanicznego Tarom w północno-zachodnim Iranie. W pracy przedstawiono połączenie zastosowań metod zdalnych wykorzystujących technologię ASTER (Advanced Spaceborne Thermal Emission and Refelection Radiometer), analizę danych geochemicznych zebranych na podstawie osadów dennych ze strumieni oraz próbek skał w obrębie pola obserwacji a także danych mineralogicznych w celu rozpoznania skupisk rud miedzi. Na podstawie danych uzyskanych przy użyciu technologiiASTER i poddanych obróbce przy użyciu różnorodnych technik: badanie układu pasm, dopasowanie metodę najmniejszych kwadratów oraz minimalny współczynnik szumów, rozróżniono strefy przeobrażeń skał. Metody te pozwoliły na wykrycie trzech typów skał przeobrażonych: gliniaste, łupki ilasto-mikowe oraz strefy występowania tlenków żelaza występujące na północno-wschodnich (NE) i południowo- -zachodnich (NW) krańcach pasa Abhar. W części północno-zachodnie (NW) i południowo-zachodniej (SW) badanego obszaru stwierdzono występowanie stref propilitu i krzemianów. Lineacje wykryto przy pomocy metody badania zakresu barw, filtrów wysoko-przepustowych, techniki określania wysokości, na tej podstawie określono dwa główne trendy: NW-SE oraz NE-SW. Anomalie geologiczne wydzielono za pomocą metody N-S (liczba-wymiar). Interpretacja wykresów N-S wykonanych w skali logarytmicznej wykazała, że zaobserwowany układ może być wynikiem trzech etapów wzbogacania: mineralizacji i późniejszego rozproszenia. Badania terenowe oraz analizy mineralograficzne potwierdzają obecność odpowiednio zmineralizowanej miedzi.
Rocznik
Strony
1071--1084
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
  • Department of Geology, North Tehran Branch, Islamic Azad University, Tehran
autor
  • Department of Geology, North Tehran Branch, Islamic Azad University, Tehran
autor
  • Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Camborne School of Mines, University of Mines, University of Exeter, Penryn, UK
Bibliografia
  • Abarca M.A.A., 2006. Lineament extraction from digital terrain models. Master of Science dissertation, Addis Ababa University, 1-81 pp.
  • Afzal P., Fadakar Alighalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2010a. Application of power spectrum-area fractal model to separate anomalies from background in Kahang Cu-Mo porphyry deposit, Central Iran. Arch. Min. Sci., Vol. 56, No. 3, p. 389-401.
  • Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B., Fadakar Alghalandis Y., 2010b. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor 104, 34-46.
  • Agterberg F.P., Cheng Q., Wright D.F., 1993. Fractal modeling of mineral deposits. In: Elbrond, J., Tang, X. (Eds.), 24th APCOM symposium proceeding, Montreal, Canada, 43-53 pp.
  • Agterberg F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1-8.
  • Agterberg F.P., Cheng Q. Brown A., Good D., 1996. Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput Geosci 22(5). 497-507.
  • Aichler J., Malec J., Večeřa J., Hanžl P., Buriánek D., Sidorinová T., Táborský Z., Bolormaa K., Byambasuren D., 2008. Prospection for gold and new occurrences of gold-bearing mineralization in the eastern Mongolian Altay. Journal of Geosciences, 53 (2), 123-138.
  • Arian M., 2011. Basement Tectonics and Geology of Iran. Asar Nafis Press, Tehran, p. 140-147 (In Persian). Asadi Haroni H., Lavafan A., 2007. Integrated Analysis of ASTER and Landsat ETM Data to Map Exploration Targets in the Muteh Gold -Mining Area, IRAN. 5th International Symposium on Spatial Data Quality, Enschede, The Netherlands.
  • Asadi Haroni H., Lavafan A., 2007. Integrated Analysis of ASTER and Landsat ETM Data to Map Exploration Targets in the Muteh Gold -Mining Area, IRAN. 5th International Symposium on Spatial Data Quality, Enschede, The Netherlands.
  • Azizi H., Tarverdi M.A., Akbarpour A., 2010. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research 46, 99-109.
  • Beiranvand Pour A., Hashim M., Marghany M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences 6(4), 917-929.
  • Beiranvand Pour A., Hashim M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews 44, 1-9.
  • Cheng Q., Agterberg F.P., Ballantyne S.B., 1994. The separation of geochemical anomalies from background by fractalmethods. Journal of Geochemical Exploration 51, 109-130.
  • Cheng Q., 1999. Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65(3), 175-194.
  • Cheng Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314-324.
  • Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95-105.
  • Fletcher W.K., 1997. Stream sediment geochemistry in today’s exploration world. In: Proceeding of exploration 97: Fourth Decennial Internation Conference on Mineral exploration, Gubins, A.G., Editor, 249-260 pp.
  • Goncalves M.A., Mateus A., Oliveira V., 2001. Geochemical anomaly separation by multifractal modeling. J. Geochem. Explor. 72, 91-114.
  • Gumiel P., Sanderson D.J., Arias M., Roberts S., Martín-Izard A., 2010. Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews 38, 307-318.
  • Hawkes R.A.W., Webb H.E., 1979. Geochemistry in mineral exploration, 2nd edn. Academic Press, New York, 657 pp.
  • Hirayama K., Haghipour A., Hajian J., 1966. Geological map of Zanjan. Geological Survey of Iran (GSI).
  • Inzana J., Kusky T., Higgs G., Tucker R., 2003. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences 37, 59-72.
  • Kujjo C.P., 2010. Application of remote sensing for gold exploration in the Nuba Montains, Sudan. Bowling Green State University, Master of Science Thesis, 99 pp.
  • Li C., Xu Y., Jiang X., 1994. The fractal model of mineral deposits. Geology of Zhejiang 10, 25-32 (In Chinese with English Abstract).
  • Li C., Ma T., Shi J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 77, 167-175.
  • Mandelbrot B.B., 1983. The fractal geometry of nature. Freeman, San Fransisco, 1-468 pp.
  • Mars J.C., Rowan L.C., 2006. Radiometer (ASTER) data and logical operator algorithms arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Regional mapping of phyllic and argillic altered rocks in the Zagros magmatic. Geosphere 2, 161-186.
  • Moghtaderi A., Moore F., Mohammadzadeh A., 2007. The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. Journal of Asian Earth Sciences 30: 238-252.
  • Monecke T., Monecke J., Herzig P.M., Gemmell J.B., Monch W., 2005. Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth and Planetary Science Letters 232, 363-378.
  • Mousavi S.R., 2012. Theory and modified rules to determine uncertainty in mineral prospection. PhD dissertation, TU Clausthal 1-120 pp.
  • Oskouei M., Busch W., 2012. A selective combined classification algorithm for mapping alterations on ASTER data. Appl. Geomat. 4, 47-54.
  • Poormirzaee R., Mohammady Oskouei M., 2010. Use of spectral analysis for detection of alterations in ETM data, Yazd, Iran. Applied Geomatics 2, 147-154.
  • Rajendran S., Khirbash S.A., Pracejus B., Nasir S., Al-Abri A.H., Kusky T.M., Ghulam A., 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strateg. Ore Geology Reviews 44, 121-135.
  • Reimann C., Filzmoser P., Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment 346, 1-16.
  • Rowan L.C., Mars J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment 84, 350-366.
  • Sadeghi B., Moarefvand P., Afzal P., Yasrebi A.B., Daneshvar Saein L., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9-19.
  • Sanderson D.J., Roberts S., Gumiel P., 1994. A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Econ Geol 89, 168-173.
  • Sarp G., 2005. Lineament Analysis from Satellite Images, North-West of Ankara. Master of Science Dissertation, School of Natural and Applied Science of Middle East Technical University.
  • Shi J., Wang C., 1998. Fractal analysis of gold deposits in China: implication for giant deposit exploration. Earth Sci. J. China Univ. Geosci. 23:616-618 (In Chinese with English Abstract).
  • Tukey J.W., 1977. Exploratory Data Analysis. First ed. Pearson, pp 1-688.
  • Turcotte D.L., 1996. Fractals and Chaos in Geophysics, second ed. Cambridge University Press, Cambridge UK, 81-99 pp.
  • Turcotte D.L., 1997. Fractals and chaos in geology and geophysics. Cambridge Univ., Press, Cambridge.
  • Turcotte D.L., 2002. Fractals in petrology. Lithos 65, 261-271.
  • Weldemariam A.F., 2009. Mapping Hydrothermally Altered Rocks and Lineament Analysis Through Digital Enhancement of ASTER Data Case Study: Kemashi area, Western Ethiopia. Master of Science dissertation, Addis Ababa University, 79 pp.
  • Xie X., Wang X., 1991. Geochemical exploration for gold: a new approach to an old problem. J. Geochem. Explor., 40, 25-48.
  • Yetkin E., Toprak V., Suezen M.L., 2004. Alteration Mapping By Remote Sensing: Application To Hasandağ-Melendiz Volcanic, Complex. Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul.
  • Yousefifar S., Khakzad A., Asadi Harooni H., Karami J., Jafari M.R., Vosoughi Abedin M., 2011. Prospection of Au and Cu bearing targets by exploration data combination in southern part of Dalli Cu-Au porphyry deposit, Central Iran. Arch. Min. Sci., Vol.. 56, No. 1, p. 21-34.
  • Zuo R., Cheng Q., Xia Q., 2009. Application of fractal models to characterization of vertical distribution of geochemical element concentration. J. Geochem. Explor. 102(1), 37-43.
  • Zuo R., 2011. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 111, 13-22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b02d84a-2a95-450e-b65b-086c0f534bac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.