PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using an artificial neural network model for natural gas heat combustion forecasting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
One of the parameters characterizing the quality of the gaseous fuel transported in gas pipeline network to consumers and being the basis for the classification of gaseous fuels is the heat of combustion. The main research hypothesis of this paper is the analysis of the possibility of using MLP 18-yi -1 neural network model to forecast the natural gas heat of combustion with a forecast error smaller than in case it calculates the heat of combustion based on the composition of natural gas predicted using the MLP 18-65-5 (Szoplik and Muchel, 2023). The training of the models was carried out on the basis of 8760 real data, presenting the hourly heat of natural gas combustion at one of the measurement points of this parameter in the pipeline network. The model takes into account the influence of calendar factors (month, day of the month, day of the week and hour of the day) and weather factors (ambient temperature) on the amount of heat of natural gas combustion in a given location of the gas network. Many MLP 18-yi -1 models were trained, differing in the number of neurons in the hidden layer and activation functions of neurons in the hidden and output layers.
Rocznik
Strony
art. no. e19
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. AlQuraishi A.A., Shokir E.M., 2011. Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation. J. King Saud Univ. Eng. Sci., 23, 123–129. DOI: 10.1016/j.jksues.2011.03.004.
  • 2. Alves Jr. O., Fontes C., 2022. Modeling and optimization of natural gas distribution networks for new supplier projects. Energy Convers. Manage.: X, 15, 100240. DOI: 10.1016/j.ecmx.2022.100240.
  • 3. Androjić I., Dolaček-Alduk Z., 2018. Artificial neural network model for forecasting energy consumption in hot mix asphalt (HMA) production. Constr. Build. Mater., 170, 424–432. DOI: 10.1016/j.conbuildmat.2018.03.086.
  • 4. Bagheri M., Akbari A., Mirbagheri S.A., 2019. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review. Process Saf. Environ. Prot., 123, 229–252. DOI: 10.1016/j.psep.2019.01.013.
  • 5. Bermúdez A., Shabani M., 2022. Numerical simulation of gas composition tracking in a gas transportation network. Energy, 247, 123459. DOI: 10.1016/j.energy.2022.123459.
  • 6. Chaczykowski M., Sund F., Zarodkiewicz P., Hope S.M., 2018. Gas composition tracking in transient pipeline flow. J. Nat. Gas Sci. Eng., 55, 321–330. DOI: 10.1016/j.jngse.2018.03.014.
  • 7. Chaczykowski M., Zarodkiewicz P., 2017. Simulation of natural gas quality distribution for pipeline systems. Energy, 134, 681–698. DOI: 10.1016/j.energy.2017.06.020.
  • 8. Chu J., Liu X., Zhang Z., Zhang Y., He M., 2021. A novel method overcomeing overfitting of artificial neural network for accurate prediction: Application on thermophysical property of natural gas. Case Stud. Therm. Eng., 28, 101406. DOI 10.1016/j.csite.2021.101406.
  • 9. Fan D., Gong J., Zhang S., Shi G., Kang Q., Xiao Y., Wu C., 2021. A transient composition tracking method for natural gas pipe networks. Energy, 215, 119131. DOI: 10.1016/j.energy.2020.119131.
  • 10. Farzaneh-Gord M., Mohseni-Gharyehsafa B., Ebrahimi-Moghadam A., Jabari-Moghadam A., Toikka A., Zvereva I., 2018. Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration. Flow Meas. Instrum., 64, 90–103. DOI: 10.1016/j.flowmeasinst.2018.10.013.
  • 11. Farzaneh-Gord M., Rahbari H.R., Mohseni-Gharesafa B., Toikka A., Zvereva I., 2021. Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach. J. Pet. Sci. Technol., 202, 108427. DOI: 10.1016/j.petrol.2021.108427.
  • 12. George J., Arun P., Muraleedharan C., 2018. Assessment of producer gas composition in air gasification of biomass using artificial neural network model. Int. J. Hydrogen Energy, 43, 9558– 9568. DOI: 10.1016/j.ijhydene.2018.04.007.
  • 13. Hafezi R., Akhavan A.N., Zamani M., Pakseresht S., Shamshirband S., 2019. Developing a data mining based model to extract predictor factors in energy systems: Application of global natural gas demand. Energies, 12, 4124. DOI: 10.3390/en12214124.
  • 14. Kharitonova O.S., Bronskaya V.V., Ignashina T.V., Al-Muntaser A.A., Khairullina L.E., 2019. Modeling of absorption process using neural networks. IOP Conf. Ser.: Earth Environ. Sci., 315, 032025. DOI: 10.1088/1755-1315/315/3/032025.
  • 15. Merkel G.D., Povinelli R.J., Brown R.H., 2018. Short-term load forecasting of natural gas with deep neural network regression. Energies, 11, 2008. DOI: 10.3390/en11082008.
  • 16. Mohandes M., Balghonaim A., Kassas M., Rehman S., HalawaniT.O., 2000. Use of radial basis functions for estimating monthly mean daily solar radiation. Sol. Energy, 68, 161–168. DOI: 10.1016/S0038-092X(99)00071-7.
  • 17. Nemati Lay E., Peymani M., Sanjari E., 2012. Prediction of natural gas viscosity using artificial neural network approach. Int. J. Chem. Mol. Eng., 6, 577–583. DOI: 10.5281/zenodo.1333845.
  • 18. Okoro E.E., Ikeora E., Sanni S.E., Aimihke V.J., Ogali O.I., 2022. Adoption of machine learning in estimating compressibility factor for natural gas mixtures under high temperature and pressure applications. Flow Meas. Instrum., 88, 102257. DOI: 10.1016/j.flowmeasinst.2022.102257.
  • 19. Osiadacz A.J., Chaczykowski M., 2020. Modeling and simulation of gas distribution networks in a multienergy system environment. Proc. IEEE, 108, 1580–1595. DOI: 10.1109/JPROC.2020.2989114.
  • 20. Park J., Cho J., Choi H., Park J., 2020. Prediction of reformed gas composition for diesel engines with a reformed EGR system using an artificial neural network. Energies, 13, 5886. DOI: 10.3390/en13225886.
  • 21. Piotrowski K., Piotrowski J., Schlesinger J., 2003. Modelling of complex liquid–vapour equilibria in the urea synthesis process with the use of artificial neural network. Chem. Eng. Process. Process Intensif., 42, 285–289. DOI: 10.1016/S0255-2701(02)00060-0.
  • 22. PN-EN ISO 6976:2016-11. Natural gas – Calculation of calorific values, density, relative density and Wobbe indices from composition.
  • 23. Postawa K., Fałtynowicz H., Pstrowska K., SzczygiełJ., Kułażyński M., 2022. Artificial neural networks to differentiate the composition and pyrolysis kinetics of fresh and long-stored maize. Bioresour. Technol., 364, 128137. DOI: 10.1016/j.biortech.2022.128137.
  • 24. Saedi I., Mhanna S., Mancarella P., 2021. Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking. Appl. Energy, 303, 117598. DOI: 10.1016/ j.apenergy.2021.117598.
  • 25. Sanjari E., Nemati Lay E., 2012. Estimation of natural gas compressibility factors using artificial neural network approach. J. Nat. Gas Sci. Eng., 9, 220–226. DOI: 10.1016/ j.jngse.2012.07.002.
  • 26. Sharifi K., Sabeti M., Rafiei M., Mohammadi A.H., Ghaffari A., Asl M.H., Yousefi H., 2020. A good contribution of computational fluid dynamics (CFD) and GA-ANN methods to find the best type of helical wire inserted tube in heat exchangers. Int. J. Therm. Sci., 154, 106398. DOI: 10.1016/j.ijthermalsci.2020.106398.
  • 27. Shenbagaraj S., Sharma P.K., Sharma A.K., Raghav G., Kota K.B., Ashokkumar V., 2021. Gasification of food waste in supercritical water: An innovative synthesis gas composition prediction model based on Artificial Neural Networks. Int. J. Hydrogen Energy, 46, 12739–12757. DOI: 10.1016/j.ijhydene. 2021.01.122.
  • 28. Singh V., Gupta I., Gupta H.O., 2007. ANN-based estimator for distillation using Levenberg–Marquardt approach. Eng. Appl. Artif. Intell., 20, 249–259. DOI: 0.1016/j.engappai.2006.06.017.
  • 29. Szoplik J., 2015. Forecasting of natural gas consumption with artificial neural networks. Energy, 85, 208–220. DOI: 10.1016/j.energy.2015.03.084.
  • 30. Szoplik J., Muchel P., 2023. Using an artificial neural network model for natural gas compositions forecasting. Energy, 263, 126001. DOI: 10.1016/j.energy.2022.126001.
  • 31. Szoplik J., Stelmasińska P., 2019. Analysis of gas network storage capacity for alternative fuels in Poland. Energy, 172, 343–353. DOI: 10.1016/j.energy.2019.01.117.
  • 32. Wang B., Guo Y., Wang D., Zhang Y., He R., Chen J., 2022. Prediction model of natural gas pipeline crack evolution based on optimized DCNN-LSTM. Mech. Syst. Signal Process., 181, 109557. DOI: 10.1016/j.ymssp.2022.109557.
  • 33. Wang M., Zhao L., Du R., Wang C., Chen L., Tian L., Stanley H.E., 2018. A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms. Appl. Energy, 220, 480–495. DOI: 10.1016/j.apenergy.2018.03.148.
  • 34. Wen K., He L., Liu J., Gong, J., 2019. An optimization of artificial neural network modeling methodology for the reliability assessment of corroding natural gas pipelines. J. Loss Prev. Process Ind., 60, 1–8. DOI: 10.1016/j.jlp.2019.03.010.
  • 35. Wood D.A., Choubineh A., 2020. Transparent machine learning provides insightful estimates of natural gas density based on pressure, temperature and compositional variables. J. Nat. Gas Geosci., 5, 33–43. DOI: 10.1016/j.jnggs.2019.12.003.
  • 36. Yang Z., Mourshed M., Liu K., Xu X., Feng S., 2020. A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting. Neurocomputing, 397, 415–421. DOI: 10.1016/j.neucom.2019.09.110.
  • 37. Zhang C., Wei H., Xie L., Shen Y., Zhang K., 2016. Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework. Neurocomputing, 205, 53–63. DOI: 10.1016/j.neucom.2016. 03.061.
  • 38. Zhang Z., Saedi I., Mhanna S., Wu K., Mancarella P., 2022. Modelling of gas network transient flows with multiple hydrogen injections and gas composition tracking. Int. J. Hydrogen Energy, 47, 2220–2233. DOI: 10.1016/j.ijhydene.2021. 10.165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4afddcbf-77cf-4576-8dcd-f5b5c545903a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.