Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Opracowanie bazy danych materiałowych dla komputerowego system VirtRoll przeznaczonego do projektowania optymalnych technologii walcowania blach na gorąco
Języki publikacji
Abstrakty
The paper describes the material database, which was developed and included in the VirtRoll computer system dedicated to the design of optimal hot strip rolling technologies. The structure and functionalities of the database are described in the first part of the paper. The integration between the database and the system through the Scalarm platform is described next. Following chapters are dedicated to generation of material data, which are included in the database. These data are coefficients in material models, which include flow stress models, microstructure evolution models, phase transformation models and mechanical properties models. Several models of various complexity and various predictive capabilities were chosen for each mentioned phenomenon. All are mean field models to allow fast simulation of the whole manufacturing chain. Modern steel grades were selected as the case studies. Experimental tests performed to generate the data composed plastometric tests, stress relaxation tests and dilatometric tests. Inverse analysis was applied to determine the coefficients in the model. Discussion of results focused on validation and on new aspects of models recapitulates the paper.
W artykule opisano bazę danych materiałowych, która została opracowana i zaimplementowana w komputerowym systemie VirtRoll przeznaczonym do projektowania optymalnych technologii walcowania blach na gorąco. W pierwszej części arykułu opisano strukturę i funkcjonalności bazy danych. W dalszej kolejności przedstawiono integrację bazy z systemem VirtRoll za pośrednictwem platformy Scalarm. Następne rozdziały artykułu są dedykowane generowaniu parametrów materiałowych, które zostały wprowadzone do bazy danych. Tymi parametrami są współczynniki w modelach materiałów obejmujących naprężenie uplastyczniające, rozwój mikrostruktury, przemiany fazowe i własności mechaniczne. Rozważono szereg modeli o różnym, stopniu skomplikowania i różnych możliwościach obliczeniowych. Wszystkie modele należą do grupy modeli średniego pola (ang. mean field) i pozwalają na szybkie symulacje całego cyklu wytwarzania blach. Nowoczesne stale wielofazowe zostały wybrane jako przykłady obliczeniowe. Aby uzyskać dane do identyfikacji modeli wykonano badania doświadczalne obejmujące próby plastometryczne, relaksacji naprężeń i próby dylatometryczne. Identyfikację przeprowadzono z wykorzystaniem analizy odwrotnej. Dyskusja wyników została skupiona na walidacji modeli i na nowych aspektach modelowania.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
223--244
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- ACC Cyfronet AGH, AGH University of Science and Technology, Krakow, Poland
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
autor
- CEIT Paseo de Manuel Lardizabal 15, 20018 Donostia-San Sebastian, Spain
autor
- CEIT Paseo de Manuel Lardizabal 15, 20018 Donostia-San Sebastian, Spain
autor
- Arcelor Mittal Maizieres Research SA, Voie Romaine, 57280 Maizieres-les-Metz, France
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- Abad, R., Fernández, A.I., López, B., Rodriguez-Ibabe, J.M., 2001, Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel, ISIJ International, 41.1373-1382.
- Andorfer, J., Auzinger, D.. Hirsch. M., Hubmer, G„ Pichler, R.. 1998, VAI-Q strip - an online system for controlling the mechanical properties of hot rolled strip. Proc. IF AC Workshop on Automation in Mining, Mineral and Meta! Processing. Cologne, 325-330.
- Beynon, J.H., Sellars, C.M., 1992, Modelling microstructurc and its effects during multipass hot rolling, ISIJ International, 32,359-367.
- Bliadeshia, H.K.D.H., 1980, The lower bainite transformation and the significance of carbide precipitation, Acta Metallurgical 1103-1114.
- Davenport, S.B., Silk. N.J.. Sparks, C.N., Sellars. C.M., 1999. Development of constitutive equations for the modelling of hot rolling, Materials Science and Technology, 16, I -8.
- Donnay, B., Herman, J.C., Leroy, V., Lotter, U., Grossterlinden, R., Pircher, H., 1996, Microstructurc evolution of C-Mn steels in the hot deformation process: the STRIPCAM model. Proc. Conf Modelling of Metal Rolling Processes, eds, Beynon, J.H.. Ingham, P., Teichcrt. H., Waterson K., London, 23-35.
- Gavrus. A., Massoni, E., Chenot, J.L., 1996, An inverse analysis using a finite element model for identification of Theological parameters. Journal of Materials Processing Technology, 60.447-454.
- Hensel, A., Spittel, T., 1979, Kraft- und Arbeitsbedarf Bildsamer Formgebungs-vetfahren, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig.
- Hodgson, P.D.. Gibbs, R.K.. 1992, A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ International. 32, 1329-1338.
- Elwazri, A.M., Essadiqi, E„ Yue, S.. 2004, Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels, ISIJ International, 44, 744-752.
- Ibrahim, M., Shulkosky, R.. 2007, Simulation and development of Advanced High Strength Steels on a hot strip mill using a microstructure evolution model. HSMM Application for AHSS, 1 , 1-12.
- Iza-Mendia, A., Gutierrez, I., 2013, Generalization of the existing relations between microstructure and yield stress from ferrite pearlite to high strength steels. Materials Science Engineering A, 561.40-51.
- Katsamas, A.I., Haidemenopoulos. G.N., 2008, A semi-empirical model for the evolution of retained austenite via bainitic transformation in multiphase TRIP steels, Steel Research International, 79, 875-884.
- Kowalski, B., Sellars, C.M., Pietrzyk, M., 2000, Development of a computer code for the interpretation of results of hot plane strain compression tests, ISIJ International, 40, 1230- 1236.
- Król. D., Słota. R.. Rauch. Ł.. Kitowski. J., Pietrzyk, M., 2014. Harnessing heterogeneous computational infrastructures for studying metallurgical rolling processes, in: eChallenges, eds, Cunningham, P., Cunningham, M., International Information Management Corporation, Belfast, 1-9.
- Kubin. L.P., Mortensen, A., 2003, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scripta Materialia, 48, 119-125.
- Kuziak. R., Pietrzyk, M.. 2011,Physical and numerical simulation of the manufacturing chain for the DP steel strips. Steel Research International, special edition conf. ICTP, Aachen. 756-761.
- Leblond, J.B., Devaux, J., 1984, A new kinetic model for aniso- thermal metallurgical transformations in steel including effect of austenite grain size, Acta Metallurgica, 32, 137- 146.
- Lenard, J.G., Pietrzyk, M., Cser, L., 1999, Mathematical and physical simulation of the properties of hot rolled products, Elsevier, Amsterdam.
- Loffler, H„ Doll, R., Poppe, T., Sorgel, G., Holtheuer, U.. Zouhar. G„ 2001, Control of mechanical properties by monitoring microstructure, AISE Steel Technology, 1.44-47.
- Lotter, U., Schmitz, H.-P., Zhang, L., 2004, Structure of the metallurgically oriented modelling system TK-StripCam for simulation of hot strip manufacture and application in research and production practice, Journal de Physique 11' France, 120.801-808.
- McQueen, H.J., 1993, Controversies in the theory of dynamic recrystallization. Materials Science Forum. 113-115. 429- 434.
- Milenin, I.. Pemach, M.. Pietrzyk, M., 2015, Application of the control theory tor modelling austenite-ferrite phase trans¬formation in steels. Computer Methods in Materials Science, 15,327-335.
- Nanba, S., Kitamura, M.. Shimada, M., Katsumata, M.. Inouc. T.. Imamura, H., Maeda, Y„ Hattori, S., 1992, Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steels, ISIJ, 32, 377-386.
- Novillo. E., Cotrina, E., Iza-Mendia, A., Lopez, B. Gutierrez, I.. 2005, Factors limiting the achievable ferrite grain refinement in hot worked microalloyed steels, Materials Science Forum. 500-501,355-362.
- Pietrzyk, M., 1990. Finite clement based model of structure development in the hot rolling process, Steel Research. 61. 603-607.
- Pietrzyk, M., 2000, Finite element simulation of large plastic deformation. Journal of Materials Processing Technology. 106, 223-229.
- Pietrzyk. M., 2002, Through-proccss modelling of microstructure evolution in hot forming of steels. Journal of Materials Processing Technology’, 125-126, 53-62.
- Pietrzyk, M., Kuziak, R., 2012, Modelling phase transformations in steel, in: Microstructure evolution in metal forming processes, eds, Lin, J., Balint, D. Pietrzyk, M., Woodhcad Publishing, Oxford, 145-179.
- Pietrzyk, M., Madej, L.. Rauch, L., Szeliga, D, 2015, Computational Materials Engineering: Achieving high accuracy and efficiency in metals processing simulations, Elsevier. Amsterdam.
- Pietrzyk, M., Kania, Z., Kuziak, R.. Rauch, L., Kusiak. J.. 2016. A simple model for prediction of retained austenite in steel rods after hot rolling and controlled cooling, Proc. XXXI’ Verformungskundliches Kolloquium, ed., Buchmayr. B.. Zauchensee, 56-66.
- Pietrzyk, M., Kuziak, R., Pidvysots’kyy, V., Kusiak. J.. 2017. Applications of plane strain compression tests for identification of material models and for physical simulation of thermomechanical processing of bainitic steel. PI K XXXVI Verformungskundliches Kolloquium. ed.. Buchmayr, B., Zauchensee, 23-30.
- Rauch, L„ Bzowski, K.. Kuziak, R., Kitowski. J.. Pietrzyk. M . 2016, The off-line computer system for design of the hot rolling and laminar cooling technology for steel stops Journal of Machine Engineering, 16, 27-43.
- Sah, J.P., Sellars, C. M., Effect of deformation history on recrystallization and restoration in ferritic stainless steel, 1979, Proc. Conf. on Working and Forming Processes. Metals Society. London, 62-66.
- Sellars, C.M., MeTegart, W.J., 1966. La relation entre la resistance et la structure dans deformation a chaud ,Memoires et Etudes Scientifiques de la Revue de Metallurgie, 63,731-740.
- Sellars, C.M.. 1979. Physical metallurgy of hot working, in: Hot Working and Fanning Processes, eds, Sellars, C.M., Da¬vies, G.J., The Metals Soc.. London, 3-15.
- Smith. A„ Miroux. A., Sietsma, J„ van der Zwaag, S., 2006, A physical analysis of the stress relaxation kinetics of deformed austenite in C-Mn steel. Steel Research Interna¬tional. 77. 595-602.
- Szeliga, D„ Gawijd, J„ Pietrzyk, M., 2006, Inverse analysis for identification of rheological and friction models in metal forming. Computer Methods in Applied Mechanics and Engineering, 195, 6778-6798.
- Szeliga, D„ Pietrzyk, M., 2007, Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation. Archives of Civil and Mechanical Engineering, 7, 35-52.
- Trowsdale, A.J., Randerson, K.., Morris, P.F., Husain, Z., Crowther, D.N., 2001, MetModel: microstructural evolu¬tion model for hot rolling and prediction of final product properties, Iron making and Steel making, 28, 170-174.
- Uranga, P., Fernandez, A.I., Lopez, B„ Rodriguez-Ibabe, J.M., 2004, Modeling of austenite grain size distribution in Nb microalloyed steels processed by thin slab casting and di¬rect rolling (TSDR) route, ISIJ International, 44, 1416- 1425.
- Zahiri. S.H.. Hodgson. P.D., 2004, The static, dynamic and metadynamic rccrystallisation of a medium carbon steel, Materials Science and Technology, 20, 458-46.
- Zurob, H.S.. Hutchinson. C.R., Brechet, Y., Purdy, G.R., 2004, Rationalization of the softening and recrystallization behaviour of microalloyed austenite using mechanism maps. Materials Science and Engineering, A 382, 64-81.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4afc87db-a9d3-4c8c-a88d-8d08f52b8cd6