PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and effectiveness verification of sound reduction measures in production hall

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of the work described in this paper was to design and validate measures to reduce noise levels in a training center. This training center serves for the practical training of students with the focus in the shaping and machining engineering products. Reduction of noise in the training center was mainly due to the clarity and hearing of the spoken word between the lecturer and students, as well as to reduce the risk of hearing damage. In order to reduce noise levels, it was proposed to overlap the training center with a roof structure filled with sound absorbing material in two solutions. The noise absorption coefficient of the selected material was determined on the impedance tube. For verification of effectiveness, measurements of equivalent A sound levels were made before and after realization noise reduction measures. Reduction of equivalent A sound pressure levels after the noise reduction measures are between 15.5 dB and 17.5 dB depending on the measuring point and the operating mode. The effectiveness of the implemented measures reaches a good level, as noise was reduced to the recommended legislative level.
Twórcy
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • 1.Ver I.L., Beranek L.L. Noise and vibration control engineering: principles and applications. John Wiley and Sons Ltd. John Wiley & Sons. Inc. Hoboken, New Jersey, 2006.
  • 2.Liptai R.G., Harris D.O. Materials Research and Standards. MTRSA. 11(3), 1971, 8.
  • 3.Zajac J., Szabó D. Akustické požiadavky na deliace konštrukcie: priečky. STU Bratislava, 2009.
  • 4.Zajac J. et all. Znižovanie hluku a vibrácií v strojárskych prevádzkach. Alfa Bratislava, 1990.
  • 5.STN EN ISO 11690-2: 1999. Akustika. Odporúčané postupy na navrhovanie nízkohlučných pracovísk vybavených strojovými zariadeniami. Časť 2: Opatrenia na znižovanie hluku. 1999.
  • 6.Attenborough K., Vér I.L. Sound-Absorbing Materials and Sound Absorbers. In: Noise and Vibration Control Engineering: Principles and Applications: Second Edition, 2007.
  • 7.Horoshenkov K.V., Swift M.J. The acoustic properties of granular materials with pore size distribution close to log-normal. J Acoust Soc Am, 2001.
  • 8.Ingard U. On the Theory and Design of Acoustic Resonators. J Acoust Soc Am, 1953.
  • 9.Pavlík M., Zbojovský J. The shielding effectiveness measuring of brick wall for different material thickness. Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, Elektroenergetika, 2017.
  • 10.Čarnogurská M., Příhoda M., Brestovič T., Molínek J., Pyszko R. Determination of permeability and inertial resistance coefficient of filter inserts used in the cleaning of natural gas. J Mech Sci Technol, 2012.
  • 11.Kuczmarski M.A., Johnston J.C. Acoustic Absorption in Porous Materials. Nasa/Tm-2011-216995 2011, 1–20.
  • 12.Debski H., Teter A., Kubiak T., Samborski S. Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Compos Struct. 136, 2016, 593–601.
  • 13.Garbacz T., Jachowicz T., Gajdoš I., Kijewski G.: Research on the influence of blowing agent on selected properties of extruded cellular products.Advances In Science And Technology Research Journal, 9 (28), 2015, 81-88.
  • 14.Mika D., Józwik J. Normative measurements of noise at CNC machines work stations. Adv Sci Technol Res J. 10(30), 2016, 138–143.
  • 15.Molnár V., Fedorko G., Stehlíková B., Michalik P., Kopas M. Mathematical models for indirect measurement of contact forces in hexagonal idler housing of pipe conveyor. Measurement Journal of the International Measurement Confederation, 47(1), 2014, 794–803.
  • 16.Molnár V., Fedorko G., Stehlíková B., Michalik P., Weiszer M. A regression model for prediction of pipe conveyor belt contact forces on idler rolls. Measurement Journal of the International Measurement Confederation , 46(10), 2013, 3910–3917.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4afbe0cf-c333-425b-8f33-81c87b070924
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.