PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical response at peri-implant mandibular bone for variation of pore characteristics of implants: A Finite Element Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the mechanical response of generic dental implants having calculated porosities with varying pore-sizes has been evaluated. The purpose of this study was to compare the developed stress-strain of designed porous implants (i.e., stress at the implant and strain at the peri-implant bone) with that of the non-porous implant. Methods: 3D model of a mandible was prepared from CT scan data and nine generic dental implant models have been designed having 10%, 20%, and 30% porosity with 500, 700, and 900 micron pore size along with a non-porous model for carrying out FE analyses. First, failure analyses of implants, under a biting force of 250 N have been performed. Next, the remaining implants have been further evaluated under average compressive chewing load of 100 N, for mechanical responses at bone-implant interface. Results: Von Mises strain at the peri-implant mandibular bone increases with the increase in percentage porosity of the implant material and maximum implant stress remained much below the yield stress level. Conclusion: Implant stiffness and compressive strength vary as a function of porosity and pore size. Strain obtained on the peri-implant bone is sufficient enough to facilitate better bone growth with the 700 micron pore size and 30% porosity, thus reducing the effect of stress shielding.
Rocznik
Strony
83--93
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Metallurgical and Material Engineering, Jadavpur University, India
  • Department of Aerospace Engineering and Applied Mechanics
autor
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor
  • Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
Bibliografia
  • [1] BALAZIC M., KOPAC J., JACKSON M.J., AHMED W., Review: titanium and titanium alloy applications in medicine, Int. J. Nano Biomater., 2007, 1 (1), 3–33.
  • [2] BANDYOPADHYAY A., ESPANA F., BALLA V.K., BOSE S., OHGAMI Y., DAVIES N.M., Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta. Biomater., 2016, 6, 1640–8164.
  • [3] CEHRELI M., SAHIN S., AKCA K., Role of mechanical environment and implant design on bone tissue differentiation: current knowledge and future contexts. J. Dent., 2004, 32, 123–132.
  • [4] CHLADEK W., LIPSKI T., KARASIŃSKI A., Experimental evaluation of occlusal forces, Acta. Bioeng. Biomech., 2001, 3 (1), 25–37.
  • [5] CICCIÙ M., BRAMANTI E., CECCHETTI F., SCAPPATICCI L., GUGLIELMINO E., RISITANO G., FEM and Von Mises analyses of different dental implant shapes for masticatory loading distribution, Oral. Implantol. (Rome), 2014, VII(1), 1–10.
  • [6] DEMENKO V., LINETSKIY I., NESVIT K., SHEVCHENKO A., Ultimate masticatory force as a criterion in implant selection, J. Dent. Res., 2011, 90 (10), 1211–1215.
  • [7] EL-ANWAR M.I., EL-ZAWAHRY M.M., A three dimensional finite element study on dental implant design, J. Genet. Eng. Biotechnol., 2011, 9, 77–82.
  • [8] FUKUDA A., TAKEMOTO M., SAITO T., FUJIBAYASHI S., NEO M., PATTANAYAK D.K., MATSUSHITA T., SASAKI K., NISHIDA N., KOKUBO T., NAKAMURA T., Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting, Acta. Biomater., 2011, 7, 2327–2336.
  • [9] HORITA S., SUGIURA T., YAMAMOTO K., MURAKAMI K., IMAI Y., KIRITA T., Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept, J. Prosthodont. Res., 2017, 61, 123–132.
  • [10] IKEO N., ISHIMOTO T., SERIZAWA A., NAKANO T., Control of mechanical properties of three-dimensional Ti-6Al-4V products fabricated by electron beam melting with unidirectional elongated pores, Metall. Mater. Trans. A, 2014, 45(A), 4293–4301.
  • [11] LEE D.J., JUNG J.M., LATYPOV M.I., LEE B., JEONG J., OH S.H., LEE C.S., KIM H.S., Three-dimensional real structurebased finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method, Comp. Mater. Sci., 2015, 100, 2–7.
  • [12] LIN D., LI Q., LI W., SWAIN M., Dental implant induced bone remodeling and associated algorithms, J. Mech. Behav. Biomed. Mater., 2009, 2, 410–432.
  • [13] LI J.P., DE WIJN J.R., VAN BLITTERSWIJK C.A., DE GROOT K., Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials, 2006, 27, 1223–35.
  • [14] MISHNAEVSKY L. JR, SABIROV I., LEVASHOV E., VALIEV R.Z., SEGURADO J., KOROTITSKIY A. et al., Nanostructured titanium-based materials for medical implants: Modeling and development. Mater Sci. Eng. R. Rep., 2014, 81, 1–19.
  • [15] MUÑOZ S., PAVÓN J., RODRÍGUEZ-ORTIZ J.A., CIVANTOS A., ALLAIN J.P., TORRES Y., On the influence of space holder in the development of porous titanium implants: Mechanical, computational and biological evaluation, Mater. Charac., 2015, 108, 68–78.
  • [16] NIINOMI M., Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater., 2008, 1, 30–42.
  • [17] NIINOMI M., NAKAI M., Titanium-based biomaterials for preventing stress shielding between implant devices and bone, Int. J. Biomater., 2011, 2011, 1–10, Article ID 836587.
  • [18] OTSUKI B., TAKEMOTO M., KOKUBO T., FUJIBAYASHI S., NEO M., NAKAMURA T., Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Threedimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials, 2006, 27, 5892–5900.
  • [19] PENNER M.J., ALMOUSA S.A., KOLLA L., Aseptic Loosening, [in:] J.K. DeOrio, S.G. Parekh (Eds.), Total Ankle Replacement: An Operative Manual, Lippincott Williams & Wilkins, 2014, 116–122.
  • [20] ROY S., DAS M., CHAKRABORTY P., BISWAS J.K., CHATTERJEE S., KHUTIA N., SAHA S., ROY CHOWDHURY A., Optimal selection of dental implant for different bone conditions based on the mechanical response, Acta. Bioeng. Biomech, 2017, 19 (2), 11–20.
  • [21] ROY S., KHUTIA N., DAS D., DAS M., BALLA V.K., BANDYOPADHYAY A., ROY CHOWDHURY A., Understanding compressive deformation behavior of porous Ti using finite element analysis, Mat. Sci. Eng. C-Mater., 2016, 64, 436–443.
  • [22] TORRES-SANCHEZ C., AL MUSHREF F.R.A., NORRITO M., YENDALL K., LIU Y., CONWAY P.P., The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds, Mat. Sci. Eng. C-Mater., 2017, 77, 219–228.
  • [23] WAUTHLE R., AHMADI S.M., YAVARI S.A., MULIER M., ZADPOOR A.A., WEINANS H., HUMBEECK J.V., KRUTH J.-P., SCHROOTEN J., Revival of pure titanium for dynamically loaded porous implants using additive manufacturing, Mater. Sci. and Eng. C, 2015, 54, 94–100.
  • [24] ZHANG L.C., KLEMM D., ECKERT J., HAO Y.L., SERCOMBE T.B., Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scr. Mater., 2011, 65 (1), 21–24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4afbdde5-d50b-48aa-9a35-65ea270e6157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.