PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ struktury przepływu na wymianę ciepła w procesie skraplania proekologicznych czynników chłodniczych w minikanałach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Influence of the flow structure on heat transfer in the condensation process of environmentally friendly refrigerants in mini-channels
Języki publikacji
PL
Abstrakty
PL
Podczas procesu skraplania w minikanałach następuje zmiana mechanizmów przenoszenia ciepła i masy wynikająca ze zmiany stopnia suchości x i stopnia zapełnienia φ, które wpływają na proces formowania się różnych struktur przepływu. Miarą efektywności energetycznej procesu jest współczynnik przejmowania ciepła α, który zależy od charakteru przepływu dwufazowego. W niniejszym artykule zaprezentowano wpływ formujących się struktur przepływu dwufazowego na proces wymiany ciepła podczas procesu skraplania czynników chłodniczych w poziomych minikanałach rurowych. Badania przeprowadzono dla trzech proekologicznych czynników niskociśnieniowych HFE7000, HFE7100, Novec649, o niskich wskaźnikach ODP i GWP. Proces skraplania zachodził w minikanałach rurowych o średnicy wewnętrznej dh = 2,0; 1,2; 0,8; 0,5 mm.
EN
During the condensation process in the mini-channels, the heat and mass transfer mechanisms change, resulting from the change in the vapor quality x and the void fraction φ, which in turn affect the process of formation of various flow structures. The measure of the energy efficiency of the process is the heat transfer coefficient α, which depends on the kind of the two-phase flow. This article presents the influence of the two-phase flow structures formed during the condensation process in horizontal pipe mini-channels on the heat transfer process. The research was carried out on three pro-ecological low-pressure refrigerants with low ODP and GWP coefficients, HFE7000, HFE7100, and Novec649. The condensation process took place in pipe mini-channels with an internal diameter of dh = 2.0; 1.2; 0.8; 0.5 mm
Czasopismo
Rocznik
Tom
Strony
20--26
Opis fizyczny
Bibliogr. 28 poz., fot., rys., wzory
Twórcy
  • Politechnika Koszalińska, Katedra Energetyki, Koszalin, Poland
  • Politechnika Koszalińska, Katedra Energetyki, Koszalin, Poland
Bibliografia
  • [1] Coleman JW, Garimella S. Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. Int J Refrig 2003; 26: 117-28. https://doi.org/10.1016/S0140-7007(02)00013-0.
  • [2] Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King MR. Heat transfer and fluid flow in minichannels and microchannels. Elsevier Inc.; 2006.
  • [3] Xiao J, Hrnjak P. A flow regime map for conden sation in macro and micro tubes with non-equilibrium effects taken into account. Int J Heat Mass Transf 2019; 130: 893-900. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.081.
  • [4] Jige D, Kikuchi S, Eda H, Inoue N, Koyama S. Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map. Int J Refrig 2018; 95: 156-64. https://doi.org/10.1016/j.ijrefrig.2018.09.005.
  • [5] Nema G, Garimella S, Fronk BM. Flow regime transitions during condensation in microchannels. Int J Refrig 2014; 40: 227-40. https://doi.org/10.1016/j.ijrefrig.2013.11.018.
  • [6] Enoki K, Mori H, Miyata K, Hamamoto Y. Flow patterns of the Vapor-liquid two phase flow in small tubes. Trans of the JSRAE 2013.
  • [7] Chen L, Tian YS, Karayiannis TG. The effect of tube diameter on vertical two-phase flow regimes in small tubes. Int J Heat Mass Transf 2006; 49: 4220-30. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.025.
  • [8] Zhuang X, Gong M, Chen G, Zou X, Shen J. Two phase flow pattern map for R170 in a horizontal smooth tube. Int J Heat Mass Transf 2016; 102: 1141-9. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.094.
  • [9] Kim S-M, Kim J, Mudawar I. Flow condensation in parallel micro-channels. Part 1: Experimental results and assessment of pressure drop correlations. Int J Heat Mass Transf 2012; 55: 971-83. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.013.
  • [10] Nasrfard H, Rahimzadeh H, Ahmadpour A, Naderan H. Experimental study of condensation heat transfer for R141b in intermittent flow regime within a smooth horizontal tube. Exp Therm Fluid Sci 2019; 105: 109-22. https://doi.org/10.1016/j.expthermflusci.2019.03.019.
  • [11] El Hajal J, Thome J., Cavallini A. Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int J Heat Mass Transf 2003; 46: 3349-63. https://doi.org/10. 1016/ S0017-310(03)00139-X.
  • [12] Al-Zaidi AH, Mahmoud MM, Karayiannis TG. Condensation flow patterns and heat transfer in horizontal microchannels. Exp Therm Fluid Sci 2018; 90: 153-73. https://doi.org/10.1016/j.expthermflusci.2017.09.009.
  • [13] Mikielewicz D, Wajs J, Andrzejczyk R, Klugmann M. Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int J Refrig 2016; 39; 2: 123-146. https://doi.org/10.1016/j.ijrefrig.2016.03.005.
  • [14] Mohamadi S, Yazdi MH, Solomin E, Fudholi A, Sopian K, Chong PL. Heat transfer and entropy generation analysis of internal flow of nanorefrigerant with slip condition at wall. Therm Sci Eng Prog 2021; 22: 100829. https://doi.org/10.1016/j.tsep.2020.100829.
  • [15] Adebayo V, Abid M, Adedeji M, Dagbasi M, Bamisile O. Comparative thermodynamic performance analysis of a cascade refrigeration system with new refrigerants paired with CO2. Appl Therm Eng 2021; 184: 116286. https://doi.org/10.1016/j.applthermaleng.2020.116286.
  • [16] Woodcock C, Ng’oma C, Sweet M, Wang Y, Peles Y, Plawsky J. Ultra-high heat flux dissipation with Piranha Pin Fins. Int J Heat Mass Transf 2019; 128: 504-515. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.030.
  • [17] Eraghubi M, Di Marco P, Robinson AJ. Low mass flux upward vertical forced flow boiling of HFE7000. Exp Therm Fluid Sci 2019; 102: 291-301 https://doi.org/10.1016/j.expthermflusci.2018.11.011.
  • [18] Strąk K, Piasecka M. The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling. Int J Heat Mass Transf 2020; 158: 119933. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119933.
  • [19] Cao Z, Wu Z, Sundén B. Pool Boiling of NOVEC 649 on Microparticle-Coated and Nanoparticle-Coated Surfaces. Heat Transf Eng 2020; 42: 1732-1747. https://doi.org/10.1080/01457632.2020.1818419.
  • [20] Wang H, Li H, Wang L, Bu X. Thermodynamic Analysis of Organic Rankine Cycle with Hydrofluoroethers as Working Fluids. Energy Procedia 2017; 105: 1889-94. https://doi.org/10.1016/j.egypro.2017.03.554.
  • [21] Sun Z, Wang Q, Dai B, Wang M, Xie Z. Options of low Global Warming Potential refrigerant group for a three-stage cascade refrigeration system. Int J Refrig 2019; 100: 471-83. https://doi.org/10.1016/j.ijrefrig.2018.12.019.
  • [22] Xiang J, Liu Z, Zhang C, Zhou C, Chen C. Finite Element Simulation of the Machining Process of Boiling Structures in a Novel Radial Heat Sink for High-Power LEDs. Materials (Basel) 2020; 13: 3958. https://doi.org/10.3390/ma13183958.
  • [23] Bohdal T, Charun H, Sikora M. Empirical study of heterogeneous refrigerant condensation in pipe minichannels. Int J Refrig 2015; 59: 210-23. https://doi.org/10.1016/j.ijrefrig.2015.07.002.
  • [24] Sikora M, Bohdal T. Heat and flow investigation of NOVEC649 refrigerant condensation in pipe minichannels. Energy 2020; 209: 118447. https://doi.org/10.1016/j.energy.2020.118447.
  • [25] Bohdal T, Charun H, Sikora M. Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 2011; 54: 1963-74. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005.
  • [26] Sikora M, Bohdal T. Application of computer image analyzes in the investigation of refrigerants condensation in minichannels. Arch Thermodyn 2019; 40. https://doi.org/10.24425/ather.2019.128292.
  • [27] Sikora M. Flow Structure Investigations during Novec Refrigerant Condensation in Minichannels. Materials (Basel) 2021; 14: 6889. https://doi.org/10.3390/ma14226889.
  • [28] Bohdal T, Sikora M, Widomska K, Radchenko AM. Investigation of flow structures during HFE7100 refrigerant condensation. Arch Thermodyn 2015; 36: 25-34. https://doi.org/10.1515/aoter-2015-0030.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4af8951e-e95b-4e8b-9aa7-3991ae743b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.