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Abstract: In this paper we consider a modified Rectangle Packing Problem where for each 

rectangle (module) its width and height come from uniform probability distribution 

between 0 and 1 - U(0,1). We provide a probabilistic analysis of a simple polynomial-time 

algorithm for Rectangle Packing Problem. At the end a comparison to the computer 

simulations is presented. 
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1. Introduction 

In this paper we consider a Rectangle Packing Problem (RPP) which is a part of production 
process in many branches of industry, i.e. VLSI circuit design, stone-cutting etc. Due to the cost 
optimization, planning a production process is a challenging task. In many branches of industry one 
can face a problem of minimizing the waste of material used in production process, which can be 
modeled with Rectangle Packing Problem. The RPP is classified as a discrete optimization problem, 
which could be solved (not always to optimality) by variety of methods developed in the past four 
decades [1]. Let us define a Rectangle Packing Problem [2]. We are given a set � = {1,… , �} of � 
rectangles. Each rectangle 	 ∈ �	is characterized by its width �
, height �
. The rotation (by 90°) of 
the rectangles is allowed. The solution of the Rectangle Packing Problem (RPP) is such a packing, 
i.e., placement coordinates of a bottom-left corner of each block 	 ∈ �, that any two blocks do not 
overlap and the area of minimum enclosing rectangle of the packing is minimized. We denote as ��, �� the width and height of the enclosing rectangle, respectively. The measure of the solution is 
VoFP (Value of Filling Percentage).  

 

���� = ∑ �
 ∙ �

∈��� ∙ �� . (1) 

 
In this paper we consider stochastic RPP. Let �
, �
 for 	 ∈ � be the independent random 

variables from continuous uniform distribution �(0,1) where 0 and 1 are the minimum and the 
maximum achievable values, respectively. The values of �
, �
 describes the width and height of the 
i’th rectangle. We consider continuous uniform distribution, thus all the values from "0,1# are 
equiprobable. Now, in a similar way �� , �� are some random variables which values describe the 
width and height of the enclosing rectangle. We consider the expected value of VoFP as a measure 
of effectiveness of an algorithm. 

 

$"����# = $"∑ �
 ∙ �

∈� #$%�� ∙ ��& . (2) 
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2. Algorithm 

In this section we analyze the algorithm presented in [3]. First we sort all the rectangles with 
respect to their height. Then we put one rectangle next to the other. Since the procedure allows the 
schedule to be multilayer, at particular point we start the next layer, i.e. we put the rectangle on the 
top of the first rectangle from the previous layer. The number of layers we choose as √�. Thus the 
number of rectangles in each layer is also √�. We do not allow any rotation of rectangles. Without 
loss of generality the number of rectangles in input instance is assumed to satisfy � = ()*�+	,�-.	( ∈ /. The formal description of the algorithm can be seen below. 

 
 Algorithm 
1. sort rectangles with respect to their �
 value 
2. from 1 to √0 do: 
3.     from 1 to √0 do: 
4.         take i’th rectangle and put inline close to the previous rectangle  
5.     start a new layer     
6. calculate the width �� and height �� of enclosing rectangle  
7. return �� ∙ �� 

 
An example of resulting packing of the algorithm can be seen in Figure 1. 

 
Fig. 1. Visualization of packing obtained with the algorithm. 

First we recall the probability density function (PDF) and cumulative density function 
(CDF) for continuous uniform distribution �(0,1) denoted as *(�) and �(�) respectively: 

 *(�) = 1,  (3) �(�) = �	.  (4) 
  
We calculate the probability density function of the highest rectangle over all n given 

rectangles. Following the calculations from [3] the PDF of the highest rectangle can be expressed as 
the n order statistic from the set of n random variables. The general formula of PDF for k ordered 
statistic can be formed as: 
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*1:3(�) = � 4� − 1( − 16 *(�)�(�)178(1 − �(�))371. (5) 

 
Now we would like to calculate a total height of the schedule. The height of the first layer is 

equal to the maximum height over n rectangles, i.e. the n ordered statistic. The height of the second 
layer is the � − √� ordered statistic, etc. The expected value of the k ordered statistics takes the 
form: 

 

$"�1:3# = 9�� 4� − 1( − 16 �178(1 − �)371:� = � − (√�� + 1 .8
<

 
(6) 

 
And thus the expected value of the total height takes the form: 
 

$%��& = = $%�371√3:3& =√378
1>< = � − (√�� + 1

√378
1>< = �?√� + 1@2(� + 1) . (7) 

 
 
The next step is to approximate the expected value of the width of the schedule. Every layer 

composes of √� blocks. The total width of the schedule is the maximum width over √�	layers. To 
approximate the density function of the width of any layer we use the Central Limit Theorem: 

 

√�BC1�=�

3


>8 D − $"�
#E F→ /(0, H)), (8) 

 

where H) = 88) is the variance of the uniform distribution �(0,1). Now let ��I  be the random 

variable describing the width of any layer. From Central Limit Theorem: 
 $"��I # ≅ $ K√�H/(0,1) + �$"�8#L. (9) 

Now using (6) and the cumulative density function of standard normal distribution we have: 
 

$"��# = $%(��I)√3:√3& ≅ √�M H 9 �√� 1√2N $�O P− �)2 QC12 41 + $+* R �√2S6D
√378 :�T

7T
+ √�2 , (10) 

 
where Erf() is a Gauss error function.  
The last thing is to calculate the expected value of an area of a particular rectangle. Since for 

each 	 ∈ �, �
 and �
 are independent, then  
 $"�
 ∙ �
# = $"�
# ∙ $"�
# = 14. (11) 
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 Now we can calculate the expected value of VoFP for sample value of number of 

rectangles. Let us set � = 10000. The $"����# is equal to: 
 

$"����# = �4$%��&$"��# ≅ �4�?√� + 1@2(� + 1) V√�M W 1122,50759 + √�2 Z ≅ 25002890 ≅ 0,865. (12) 

 

2.1. Computer simulations 

In this subsection we present a comparison between theoretic and simulated results. 

Table 1. Expected value of VoFP. 

 Theoretic $"����# Simulated $"����# 
n=100 0,710 0,620 

n=10000 0,865 0,878 
n=40000 0,894 0,897 

3. Conclusions 

In this paper we analyze a simple algorithm for a stochastic Rectangle Packing Problem. We 
show that the theoretic results are close to the simulated, and both are close to the optimum. The 
approximation of the total width of the schedule can be improved using the Berry–Esseen theorem 
which describes the rate of convergence in Central Limit Theorem. 
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ANALIZA PROBABILISTYCZNA ALGORYTMU DLA STOCHASTYCZNEGO 

PROBLEMU PAKOWANIA PROSTOKĄTÓW. 

W tej pracy rozważamy Problem Pakowania Bloków, który występuje w wielu gałęziach 
przemysłu, np. w projektowaniu układów scalonych, cięciu bloków kamiennych, przemyśle 
tekstylnym. Rozważamy zmodyfikowany problem, w którym wysokości i szerokości bloków są 
zadane jednostajnym, ciągłym rozkładem prawdopodobieństwa U(0,1). W tej pracy prezentujemy 
analizę probabilistyczną skuteczności algorytmu przestawionego w pracy [3]. Prezentujemy 
również wyniki symulacji komputerowych i porównujmy je z wynikami teoretycznymi. 
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