PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Review on Crop Responses to Nanofertilizers for Mitigation of Multiple Environmental Stresses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past years, alterations in the environment have had an adverse impact on the global agricultural system, leading to difficulties in plant growth, physiology, and productivity due to non-living factors. These difficulties pose a significant risk to both global food security and agricultural advancement, necessitating innovative methods for long-term sustainability. Nanotechnology has emerged as a promising solution to address these difficulties by utilizing nanoscale products like nanofertilizers, nanofungicides, nanoherbicides, and nanopesticides. Nanoparticles provide distinct advantages in agriculture due to their small size, ability to easily penetrate cellular barriers, and efficient absorption by plants. Numerous studies have demonstrated that the application of nanoparticles can improve both the quantity and quality of crop yields, even when faced with various biological and environmental pressures. This research study primarily focuses on investigating the impact of non-living pressures on plants and examining how nanoparticles can help alleviate these effects. Additionally, it explores the molecular, metabolic, and anatomical adaptations that plants undergo to thrive in challenging environments. Nonetheless, it is essential to acknowledge that the widespread utilization of nanotechnology raises concerns regarding potential risks to the environment and human health.
Słowa kluczowe
Twórcy
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
  • Department of Biological Sciences, Al Hussein bin Talal University, P.O. Box 20, Maan, Jordan
  • Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
  • Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
autor
  • University of Delhi, Delhi, 110007, India
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
Bibliografia
  • 1. Adrees, M., Khan, Z.S., Hafeez, M., Rizwan, M., Hussain, K., Asrar, M., Alyemeni, M.N., Wijaya, L., Ali, S. 2021. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol. Environ. Saf., 208, 111627. https://doi.org/10.1016/J.ECOENV.2020.111627
  • 2. Al-Mamun, M.R., Hasan, M.R., Ahommed, M.S., Bacchu, M.S., Ali, M.R., Khan, M.Z.H. 2021. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov., 23, 101658. https://doi.org/10.1016/J.ETI.2021.101658
  • 3. Alabdallah, N.M., Alzahrani, H.S. 2020. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J. Biol. Sci., 27, 3132–3137. https://doi.org/10.1016/J.SJBS.2020.08.005
  • 4. Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J.M., Thieme, J., Li, J., Lombi, E., Bland, G., Lowry, G.V. 2019. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano, 13, 5291–5305. https://doi.org/10.1021/ACSNANO.8B09781/SUPPL_FILE/NN8B09781_SI_001.PDF
  • 5. Baig, N., Kammakakam, I., Falath, W., Kammakakam, I. 2021. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2, 1821–1871. https://doi.org/10.1039/D0MA00807A
  • 6. Banerjee, K., Pramanik, P., Maity, A., Joshi, D.C., Wani, S.H., Krishnan, P. 2019. Methods of Using Nanomaterials to Plant Systems and Their Delivery to Plants (Mode of Entry, Uptake, Translocation, Accumulation, Biotransformation and Barriers). Adv. Phytonanotechnology From Synth. to Appl., 123–152. https://doi.org/10.1016/B978-0-12-815322-2.00005-5
  • 7. Bayat, N., Ghanbari, A.A., Bayramzade, V. 2020. Nanopriming a method for improving crop plants performance: a case study of red beans. J. Plant Nutr., 44, 142–151. https://doi.org/10.1080/01904167.2020.1806304
  • 8. Bhatla, S.C., A. Lal, M. 2018. Plant Physiology, Development and Metabolism. Plant Physiol. Dev. Metab. https://doi.org/10.1007/978-981-13-2023-1
  • 9. Bidi, H., Fallah, H., Niknejad, Y., Barari Tari, D. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol. Biochem., 163, 348–357. https://doi.org/10.1016/J.PLAPHY.2021.04.020
  • 10. Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P., Vijver, M.G. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. https://doi.org/10.1016/J.CHEMOSPHERE.2019.03.163
  • 11. Bussières, P. 2014. Estimating the number and size of phloem sieve plate pores using longitudinal views and geometric reconstruction. Sci. Reports, 41(4), 1–11. https://doi.org/10.1038/srep04929
  • 12. Das, A., Ray, R., Mandal, N., Chakrabarti, K. 2016. An analysis of transcripts and enzyme profiles in drought stressed jute (Corchorus capsularis) and rice (Oryza sativa) seedlings treated with CaCl2, hydroxyapatite nano-particle and β-amino butyric acid. Plant Growth Regul., 79, 401–412. https://doi.org/10.1007/S10725-015-0144-9/METRICS
  • 13. Djanaguiraman, M., Nair, R., Giraldo, J.P., Prasad, P.V.V. 2018. Cerium Oxide Nanoparticles Decrease Drought-Induced Oxidative Damage in Sorghum Leading to Higher Photosynthesis and Grain Yield. ACS Omega, 3, 14406–14416. https://doi.org/10.1021/ACSOMEGA.8B01894/ASSET/IM-AGES/LARGE/AO-2018-018949_0007.JPEG
  • 14. Eichert, T., Kurtz, A., Steiner, U., Goldbach, H.E. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant., 134, 151–160. https://doi.org/10.1111/J.1399-3054.2008.01135.X
  • 15. El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F., Schwab, F. 2020. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol., 163(16), 344–353. https://doi.org/10.1038/s41565-020-00812-0
  • 16. Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie, Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015. https://doi.org/10.1155/2015/756120
  • 17. Faraji, J., Sepehri, A. 2020. Exogenous Nitric Oxide Improves the Protective Effects of TiO2 Nanoparticles on Growth, Antioxidant System, and Photosynthetic Performance of Wheat Seedlings Under Drought Stress. J. Soil Sci. Plant Nutr., 20, 703–714. https://doi.org/10.1007/S42729-019-00158-0/METRICS
  • 18. Fraceto, L.F., Grillo, R., de Medeiros, G.A., Scognamiglio, V., Rea, G., Bartolucci, C. 2016. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci., 4, 20. https://doi.org/10.3389/FENVS.2016.00020/BIBTEX
  • 19. Ghani, M.I., Saleem, S., Rather, S.A., Rehmani, M.S., Alamri, S., Rajput, V.D., Kalaji, H.M., Saleem, N., Sial, T.A., Liu, M. 2022. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289, 133202. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133202
  • 20. Grillo, R., Mattos, B.D., Antunes, D.R., Forini, M.M.L., Monikh, F.A., Rojas, O.J. 2021. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 37, 101078. https://doi.org/10.1016/J.NANTOD.2021.101078
  • 21. Ha, N., Seo, E., Kim, S., Lee, S.J. 2021. Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Sci. Reports, 111(11), 1–13. https://doi.org/10.1038/s41598-021-91073-x
  • 22. Hatami, M., Kariman, K., Ghorbanpour, M. 2016. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci. Total Environ., 571, 275–291. https://doi.org/10.1016/J.SCITOTENV.2016.07.184
  • 23. Hu, P., An, J., Faulkner, M.M., Wu, H., Li, Z., Tian, X., Giraldo, J.P. 2020a. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano., 14, 7970–7986. https://doi.org/10.1021/ACSNANO.9B09178/SUPPL_FILE/NN9B09178_SI_017.AVI
  • 24. Hu, P., An, J., Faulkner, M.M., Wu, H., Li, Z., Tian, X., Giraldo, J.P. 2020b. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano., 14, 7970–7986. https://doi.org/10.1021/ACSNANO.9B09178/SUPPL_FILE/NN9B09178_SI_017.AVI
  • 25. Hussain, S., Khan, F., Hussain, H.A., Nie, L. 2016. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci., 7, 116. https://doi.org/10.3389/FPLS.2016.00116/BIBTEX
  • 26. Iqbal, M., Raja, N.I., Mashwani, Z.U.R., Hussain, M., Ejaz, M., Yasmeen, F. 2019. Effect of Silver Nanoparticles on Growth of Wheat Under Heat Stress. Iran. J. Sci. Technol. Trans. A Sci., 43, 387–395. https://doi.org/10.1007/S40995-017-0417-4/METRICS
  • 27. Isayenkov, S.V. 2012. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 465(46), 302–318. https://doi.org/10.3103/S0095452712050040
  • 28. Isayenkov, S.V., Maathuis, F.J.M. 2019. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci., 10, 80. https://doi.org/10.3389/FPLS.2019.00080/BIBTEX
  • 29. Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., Zahedi, H. 2013. Influence of Bulk and Nanoparticles Titanium Foliar Application on some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress. Not. Bot. Horti Agrobot. Cluj-Napoca., 41, 201–207. https://doi.org/10.15835/NBHA4119093
  • 30. Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S. 2016. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov., 107, 265–276. https://doi.org/10.14720/AAS.2016.107.2.01
  • 31. Jia-Yi, Y., Meng-Qiang, S., Zhi-Liang, C., Yu-Tang, X., Hang, W., Jian-Qiang, Z., Ling, H., Qi, Z. 2022. Effect of foliage applied chitosan-based silicon nanoparticles on arsenic uptake and translocation in rice (Oryza sativa L.). J. Hazard. Mater., 433, 128781. https://doi.org/10.1016/J.JHAZMAT.2022.128781
  • 32. Jiang, M., Song, Y., Kanwar, M.K., Ahammed, G.J., Shao, S., Zhou, J. 2021. Phytonanotechnology applications in modern agriculture. J. Nanobiotechnology., 19, 1–20. https://doi.org/10.1186/S12951-021-01176-W/TABLES/1
  • 33. Khan, M.R., Adam, V., Rizvi, T.F., Zhang, B., Ahamad, F., Jośko, I., Zhu, Y., Yang, M., Mao, C. 2019a. Nanoparticle-plant interactions: a two-way traffic. Small., 15, e1901794. https://doi.org/10.1002/SMLL.201901794
  • 34. Khan, M.R., Adam, V., Rizvi, T.F., Zhang, B., Ahamad, F., Jośko, I., Zhu, Y., Yang, M., Mao, C. 2019b. Nanoparticle–Plant Interactions: Two-Way Traffic. Small., 15. https://doi.org/10.1002/SMLL.201901794
  • 35. Konate, A., He, X., Zhang, Z., Ma, Y., Sustainability, P.Z. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. mdpi.com.
  • 36. Larue, C., Veronesi, G., Flank, A.M., Surble, S., Herlin-Boime, N., Carrière, M. 2012. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health., A 75, 722–734. https://doi.org/10.1080/15287394.2012.689800
  • 37. Lew, T.T.S., Park, M., Cui, J., Strano, M.S. 2021. Plant Nanobionic Sensors for Arsenic Detection. Adv. Mater., 33, 2005683. https://doi.org/10.1002/ADMA.202005683
  • 38. Li, Z., Zhu, L., Zhao, F., Li, J., Zhang, X., Kong, X., Wu, H., Zhang, Z. 2022. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Front. Plant Sci., 0, 714. https://doi.org/10.3389/FPLS.2022.843994
  • 39. Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., Sun, Y. 2021. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ. Pollut., 280, 116978. https://doi.org/10.1016/J.ENVPOL.2021.116978
  • 40. Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F. 2013. Proline mechanisms of stress survival. Antioxid. Redox Signal., 19, 998–1011. https://doi.org/10.1089/ARS.2012.5074
  • 41. Lowry, G.V., Avellan, A., Gilbertson, L.M. 2019a. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol., 14, 517–522. https://doi.org/10.1038/S41565-019-0461-7
  • 42. Lowry, G.V., Avellan, A., Gilbertson, L.M. 2019b. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol., 14, 517–522. https://doi.org/10.1038/S41565-019-0461-7
  • 43. Lutts, S., Benincasa, P., Wojtyla, L.S.K., Pace, R., Lechowska, K., Quinet, M., Garnczarska, M. 2016. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. New Challenges Seed Biol. - Basic Transl. Res. Driv. Seed Technol. https://doi.org/10.5772/64420
  • 44. Majumdar, S., Almeida, I.C., Arigi, E.A., Choi, H., VerBerkmoes, N.C., Trujillo-Reyes, J., Flores-Margez, J.P., White, J.C., Peralta-Videa, J.R., Gardea-Torresdey, J.L. 2015. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis. Environ. Sci. Technol., 49, 13283–13293. https://doi.org/10.1021/ACS.EST.5B03452/SUPPL_FILE/ES5B03452_SI_001.PDF
  • 45. Manjunatha, S.B., Biradar, D.P., Aladakatti, Y.R. 2016. Nanotechnology and its applications in agriculture: a review. J. Farm Sci., 29, 1–13.
  • 46. Massange-Sánchez, J.A., Sánchez-Hernández, C.V., Hernández-Herrera, R.M., Palmeros-Suárez, P.A. 2021. The Biochemical Mechanisms of Salt Tolerance in Plants. https://doi.org/10.5772/INTECHOPEN.101048
  • 47. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., Ghassempour, A. 2013. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf., 88, 48–54. https://doi.org/10.1016/J.ECOENV.2012.10.018
  • 48. Mittal, A.K., Chisti, Y., Banerjee, U.C. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 31, 346–356. https://doi.org/10.1016/J.BIOTECHADV.2013.01.003
  • 49. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • 50. Mohamed, H.I., Sajyan, T.K., Shaalan, R., Bejjani, R., Sassine, Y.N., Basit, A. 2022. Plant-mediated copper nanoparticles for agri-ecosystem applications. Agri-Waste Microbes Pro Sustain. Nanomater., 79–120. https://doi.org/10.1016/B978-0-12-823575-1.00025-1
  • 51. Morales-Díaz, A.B., Ortega-Ortíz, H., Juárez-Maldonado, A., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A. 2017. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 013001. https://doi.org/10.1088/2043-6254/8/1/013001
  • 52. Munns, R., Tester, M. 2008. Mechanisms of Salinity Tolerance., 59, 651–681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
  • 53. Naderi, M.R., Danesh-Shahraki, A. 2013. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci., 5, 2229–2232.
  • 54. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S. 2010. Nanoparticulate material delivery to plants. Plant Sci., 179, 154–163. https://doi.org/10.1016/J.PLANTSCI.2010.04.012
  • 55. Oprica, L., Grigore, M.N., Bara, I., Vochita, G. 2021. Salinity and SiO2Impact on Growth and Biochemical Responses of Basil (Ocimum Basilicum L.) Seedlings. 2021 9th E-Health Bioeng. Conf. EHB 2021. https://doi.org/10.1109/EHB52898.2021.9657645
  • 56. Palmqvist, N.G.M., Seisenbaeva, G.A., Svedlindh, P., Kessler, V.G. 2017. Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus. Nanoscale Res. Lett., 12, 1–9. https://doi.org/10.1186/S11671-017-2404-2/FIGURES/13
  • 57. Pan, D., Huang, G., Yi, J., Cui, J., Liu, C., Li, F., Li, X. 2022. Foliar application of silica nanoparticles alleviates arsenic accumulation in rice grain: colocalization of silicon and arsenic in nodes. Environ. Sci. Nano., 9, 1271–1281. https://doi.org/10.1039/D1EN01132D
  • 58. Panpatte, D.G., Jhala, Y.G., Shelat, H.N., Vyas, R.V. 2016. Nanoparticles: The Next Generation Technology for Sustainable Agriculture. Microb. Inoculants Sustain. Agric. Product. Vol. 2 Funct. Appl., 289–300. https://doi.org/10.1007/978-81-322-2644-4_18
  • 59. Parkinson, S.J., Tungsirisurp, S., Joshi, C., Richmond, B.L., Gifford, M.L., Sikder, A., Lynch, I., O’Reilly, R.K., Napier, R.M. 2022. Polymer nanoparticles pass the plant interface. Nat. Commun. 2022 131(13), 1–9. https://doi.org/10.1038/s41467-022-35066-y
  • 60. Peng, C., Duan, D., Xu, C., Chen, Yongsheng, Sun, L., Zhang, H., Yuan, X., Zheng, L., Yang, Y., Yang, J., Zhen, X., Chen, Yingxu, Shi, J. 2015. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ. Pollut., 197, 99–107. https://doi.org/10.1016/J.ENVPOL.2014.12.008
  • 61. Pérez-de-Luque, A. 2017. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci., 5, 12. https://doi.org/10.3389/FENVS.2017.00012/BIBTEX
  • 62. Pradhan, S., Mailapalli, D.R. 2017. Interaction of Engineered Nanoparticles with the Agri-environment. J. Agric. Food Chem., 65, 8279–8294. https://doi.org/10.1021/ACS.JAFC.7B02528/ASSET/IM-AGES/MEDIUM/JF-2017-02528G_0003.GIF
  • 63. Prasad, A., Astete, C.E., Bodoki, A.E., Windham, M., Bodoki, E., Sabliov, C.M. 2018. Zein Nanoparticles Uptake and Translocation in Hydroponically Grown Sugar Cane Plants. J. Agric. Food Chem. 66, 6544–6551. https://doi.org/10.1021/ACS.JAFC.7B02487/ASSET/IMAGES/MEDI-UM/JF-2017-02487E_0008.GIF
  • 64. Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., Ghazaryan, K. 2018. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci. Total Environ., 645, 1103–1113. https://doi.org/10.1016/J.SCITOTENV.2018.07.211
  • 65. Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H. 2020a. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci., 65, 137–143. https://doi.org/10.1016/J.AOAS.2020.08.001
  • 66. Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., Barsova, N. 2020b. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ. Geochem. Health. 42, 147–158. https://doi.org/10.1007/S10653-019-00317-3
  • 67. Rajput, V.D., Singh, A., Minkina, T.M., Shende, S.S., Kumar, P., Verma, K.K., Bauer, T., Gorobtsova, O., Deneva, S., Sindireva, A. 2021. Potential Applications of Nanobiotechnology in Plant Nutrition and Protection for Sustainable Agriculture. Nanotechnol. Plant Growth Promot. Prot., 79–92. https://doi.org/10.1002/9781119745884.CH5
  • 68. Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., Ajayi, R.F. 2022. Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor. Agric., 12, 597. https://doi.org/10.3390/AGRICULTURE12050597/S1
  • 69. Rani, S., Kumari, N., Sharma, V. 2022. Uptake, translocation, transformation and physiological effects of nanoparticles in plants. https://doi.org/10.1080/03650340.2022.2103549
  • 70. Rico, C.M., Hong, J., Morales, M.I., Zhao, L., Barrios, A.C., Zhang, J.Y., Peralta-Videa, J.R., Gardea-Torresdey, J.L. 2013. Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and in vivo fluorescence imaging. Environ. Sci. Technol., 47, 5635–5642. https://doi.org/10.1021/ES401032M/SUPPL_FILE/ES401032M_SI_001.PDF
  • 71. Ruotolo, R., Maestri, E., Pagano, L., Marmiroli, M., White, J.C., Marmiroli, N. 2018. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. Environ. Sci. Technol. 52, 2451–2467. https://doi.org/10.1021/ACS.EST.7B04121/SUPPL_FILE/ES7B04121_SI_002.ZIP
  • 72. Schwabe, F., Schulin, R., Limbach, L.K., Stark, W., Bürge, D., Nowack, B. 2013. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere., 91, 512–520. https://doi.org/10.1016/J.CHEMOSPHERE.2012.12.025
  • 73. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., Battaglia, M.L. 2021. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants, 10(259). https://doi.org/10.3390/PLANTS10020259
  • 74. Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L. 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 47, 11592–11598. https://doi.org/10.1021/ES403368J/ASSET/IM-AGES/MEDIUM/ES-2013-03368J_0006.GIF
  • 75. Shahbaz, M., Ashraf, M. 2013. Improving Salinity Tolerance in Cereals. CRC. Crit. Rev. Plant Sci., 32, 237–249. https://doi.org/10.1080/07352689.2013.758544
  • 76. Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M., Al Sahli, A.A. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem., 33, 2429–2437. https://doi.org/10.1002/ETC.2697
  • 77. Siddiqui, Z.S., Wei, X., Umar, M., Abideen, Z., Zulfiqar, F., Chen, J., Hanif, A., Dawar, S., Dias, D.A., Yasmeen, R. 2022. Scrutinizing the Application of Saline Endophyte to Enhance Salt Tolerance in Rice and Maize Plants. Front. Plant Sci., 12, 3334. https://doi.org/10.3389/FPLS.2021.770084/BIBTEX
  • 78. Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Alam, P., Hayat, S. 2021. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol. Environ. Saf., 213, 112020. https://doi.org/10.1016/J.ECOENV.2021.112020
  • 79. Sinha, R.K., Verma, S.S. 2021. Proteomics approach in horticultural crops for abiotic-stress tolerance. Stress Toler. Hortic. Crop. Challenges Mitig. Strateg. 371–385. https://doi.org/10.1016/B978-0-12-822849-4.00003-6
  • 80. Sivarethinamohan, R., Sujatha, S., 2021. Unlocking the potentials of using nanotechnology to stabilize agriculture and food production. AIP Conf. Proc. 2327, 020022. https://doi.org/10.1063/5.0039418
  • 81. Slomberg, D.L., Schoenfisch, M.H., 2012. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 46, 10247–10254. https://doi.org/10.1021/ES300949F
  • 82. Song, Y., Jiang, M., Zhang, H., Li, R. 2021. Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza Sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors. 26, 2196. https://doi.org/10.3390/MOLECULES26082196
  • 83.studies, A.M.-P. journal of environmental, 2006, undefined, 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. pjoes.com, 15, 523–530.
  • 84. Su, Mingyu, Liu, Chao, Qu, Chunxiang, Zheng, Lei, Chen, Liang, Huang, Hao, Liu, Xiaoqing, Wu, Xiao, Hong, Fashui, Su, M, Liu, C, Qu, C, Zheng, L, Chen, L, Huang, H, Liu, X, Wu, X, Hong, F, 2009. Nano-Anatase Relieves the Inhibition of Electron Transport Caused by Linolenic Acid in Chloroplasts of Spinach. Biol. Trace Elem. Res., 1311(131), 99–99. https://doi.org/10.1007/S12011-009-8428-4
  • 85. Su, Y., Ashworth, V., Kim, C., Adeleye, A.S., Rolshausen, P., Roper, C., White, J., Jassby, D. 2019. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano, 6, 2311–2331. https://doi.org/10.1039/C9EN00461K
  • 86. Sun, H., Wang, M., Wang, J., Wang, W. 2022. Surface charge affects foliar uptake, transport and physiological effects of functionalized graphene quantum dots in plants. Sci. Total Environ., 812, 151506. https://doi.org/10.1016/J.SCITOTENV.2021.151506
  • 87. Taylor, A.F., Rylott, E.L., Anderson, C.W.N., Bruce, N.C. 2014. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold. PLoS One, 9, e93793. https://doi.org/10.1371/JOURNAL.PONE.0093793
  • 88. Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H. 2013. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 810(8), 772–781. https://doi.org/10.1038/nnano.2013.181
  • 89. Torabian, S., Zahedi, M., Khoshgoftar, A.H. 2016. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress., 39, 172–180. https://doi.org/10.1080/01904167.2015.1009107
  • 90. Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R.C., Tiwari, M., Sharma, N., Sahi, S.V. 2017. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem., 110, 118–127. https://doi.org/10.1016/J.PLAPHY.2016.09.004
  • 91. Verma, K.K., Song, X.-P., Joshi, A., Rajput, V.D., Singh, M., Sharma, A., Singh, R.K., Li, D.-M., Arora, J., Minkina, T., Li, Y.-R. 2022. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. Front. Plant Sci., 13. https://doi.org/10.3389/FPLS.2022.865048
  • 92. Vishwakarma, K., Upadhyay, N., Kumar, N., Tripathi, D.K., Chauhan, D.K., Sharma, S., Sahi, S. 2018. Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture. Nanomater. Plants, Algae, Microorg., 1, 473–500. https://doi.org/10.1016/B978-0-12-811487-2.00021-9
  • 93. Wu, H., Li, Z. 2022. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? Plant Commun. 3. https://doi.org/10.1016/J.XPLC.2022.100346
  • 94. Xu, L., Wang, X., Shi, H., Hua, B., Burken, J.G., Ma, X., Yang, H., Yang, J.J. 2022. Uptake of Engineered Metallic Nanoparticles in Soil by Lettuce in Single and Binary Nanoparticle Systems. ACS Sustain. Chem. Eng., 10, 16692–16700. https://doi.org/10.1021/ACSSUSCHEMENG.2C04748/SUPPL_FILE/SC2C04748_SI_001.PDF
  • 95. Yang, C., Powell, C.A., Duan, Y., Shatters, R., Zhang, M. 2015. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing. PLoS One 10. https://doi.org/10.1371/JOURNAL.PONE.0133826
  • 96. Yasmin, H., Mazher, J., Azmat, A., Nosheen, A., Naz, R., Hassan, M.N., Noureldeen, A., Ahmad, P. 2021. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicol. Environ. Saf., 218, 112262. https://doi.org/10.1016/J.ECOENV.2021.112262
  • 97. Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J.A., Valdés, C., Medina-Velo, I.A., Turley, R.S., Peralta-Videa, J.R., Gardea-Torresdey, J.L. 2020. Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. Through Priming: A Sustainable Approach for Agriculture. ACS Sustain. Chem. Eng., 8, 1427–1436. https://doi.org/10.1021/ACSSUSCHEMENG.9B05615/SUPPL_FILE/SC9B05615_SI_001.PDF
  • 98. Younis, A.A., Khattab, H., Emam, M.M. 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. 64, 343–352. https://doi.org/10.32615/BP.2020.030
  • 99. Zandalinas, S.I., Fritschi, F.B., Mittler, R. 2021. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci., 26, 588–599. https://doi.org/10.1016/j.tplants.2021.02.011
  • 100. Zhang, Q., Ying, Y., Ping, J. 2022. Recent Advances in Plant Nanoscience. Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger., 9. https://doi.org/10.1002/ADVS.202103414
  • 101. Zhao, L., Peralta-Videa, J.R., Varela-Ramirez, A., Castillo-Michel, H., Li, C., Zhang, J., Aguilera, R.J., Keller, A.A., Gardea-Torresdey, J.L. 2012. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J. Hazard. Mater., 225–226, 131–138. https://doi.org/10.1016/J.JHAZMAT.2012.05.008
  • 102. Zhu, J., Li, J., Shen, Y., Liu, S., Zeng, N., Zhan, X., White, J.C., Gardea-Torresdey, J., Xing, B. 2020. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci. Nano., 7, 3901–3913. https://doi.org/10.1039/D0EN00658K
  • 103. Zhu, J., Wang, J., Zhan, X., Li, A., White, J.C., Gardea-Torresdey, J.L., Xing, B. 2021. Role of Charge and Size in the Translocation and Distribution of Zinc Oxide Particles in Wheat Cells. ACS Sustain. Chem. Eng., 9, 11556–11564. https://doi.org/10.1021/ACSSUSCHEMENG.1C04080/SUPPL_FILE/SC1C04080_SI_001.PDF
  • 104. Zhu, J.K. 2016. Abiotic Stress Signaling and Responses in Plants. Cell 167, 313–324. https://doi.org/10.1016/J.CELL.2016.08.029
  • 105. Zörb, C., Geilfus, C.M., Dietz, K.J. 2019. Salinity and crop yield. Plant Biol. 21, 31–38. https://doi.org/10.1111/PLB.12884
  • 106. Zulfiqar, F., Ashraf, M. 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem., 160, 257–268. https://doi.org/10.1016/J.PLAPHY.2021.01.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aefaf04-c78e-406f-a155-a22c3f7e36d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.