PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative life cycle assessment of marine desox systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With new sulphur oxides emission limits carried out in 2020, multiple desulphurisation methods have been proposed. The main desulphurisation scrubber systems were chosen and investigated using life cycle assessment. The whole system life is divided into the construction and operational phases. Three different systems classified by desulphurisers, namely, seawater, NaOH, and Mg-based systems, were modelled in GaBi software. Moreover, environmental, economic and energy aspects (3E model) were introduced for further analysis. Through this study, some conclusions have been drawn. As for the environmental aspect, the seawater system has the most pleasing performance since the primary emissions come from 1.24E+03 kg CO2 and 1.48E+01 kg chloride. The NaOH system causes 1000 times more emissions than the seawater. The Mg-based system has less pollution than the NaOH system, with 5.86E+06kg CO2 and 3.86E+03 kg chloride. The economic aspect is divided into capital expenditure (CapEx) and operational expenditure (OpEx) to estimate disbursement. The seawater system also has the most favourable cost appearance, which takes 1.7 million dollars without extra desulphuriser expenses, based on 10MW engine flue gas treatment. The next is the Mg-based system, which cost 2 million dollars in CapEx and $ 1200/year in OpEx for the desulphuriser. NaOH uses about 2.5 million dollars for construction and $ 30000/year in desulphuriser. As for the energy aspect, the seawater and Mg-based systems use less non-renewable energy than the NaOH system in the construction phase. In conclusion, the seawater system shows the best performance and could be an alternative in SOx control technologies. This study sheds light on the comprehensive evaluation of marine environmental protection technologies for further optimisation.
Słowa kluczowe
Rocznik
Tom
Strony
105--115
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Jiangsu University of Science and Technology No.2 Mengxi Road, 212003 ZhenJiang China
autor
  • Zhejiang University, Zheda road, 310027 Hangzhou, China
autor
  • Jiangsu University of Science and Technology No.2 Mengxi Road, 212003 ZhenJiang China
autor
  • Jiangsu University of Science and Technology No.2 Mengxi Road, 212003 ZhenJiang China
autor
  • Jiangsu University of Science and Technology No.2 Mengxi Road, 212003 ZhenJiang China
autor
  • Jiangsu University of Science and Technology No.2 Mengxi Road, 212003 ZhenJiang China
Bibliografia
  • 1. Revised MARPOL Annex VI: Regulations for the prevention of air pollution from ships and NOx technical code London: IMO Marine Environmental Protection Committee (MEPC), IMO, 2008
  • 2. Z. Yang, Q. Tan, and P. Geng, ‘Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulpur diesel fuel’, Polish Maritime Research. 2019, 26(1), 153-161.
  • 3. L. Yang, Y. Cai, Y. Wei, and S. Huang, ‘Choice of technology for emission control in port areas: A supply chain perspective’, Journal of Cleaner Production. 2019, 240, DOI: 10.1016/j.jclepro.2019.118105.
  • 4. W. Zeńczak and A. K. Gromadzińska, ‘Preliminary analysis of the use of solid biofuels in a ship’s power system’, Polish Maritime Research. 2020, 27(4), 67-79.
  • 5. S.-I. Park, S.-K. Kim, and J. K. Paik Freng, ‘Safety-zone layout design for a floating LNG-Fueled power plant in bunkering process’, Ocean Engineering. 2020, 196, DOI: 10.1016/j.oceaneng.2019.106774.
  • 6. J. B. Guinée et al., ‘Life cycle assessment: past, present, and future’, Environmental Science & Technology. 2011, 45(1), 90.
  • 7. F. Zheng, F. Gu, W. Zhang, and J. Guo, ‘Is bicycle sharing an environmental practice? Evidence from a life cycle assessment based on behavioural surveys’, Sustainability. 2019, 11(6), DOI: 10.3390/su11061550.
  • 8. A. Tomporowski, I. Piasecka, J. Flizikowski, R. Kasner, and K. Bieliński, ‘Comparison analysis of blade life cycles of land-based and offshore wind power plants’, Polish Maritime Research. 2018, 25(97), 225-233, DOI: 10.2478/ pomr-2018-0046.
  • 9. X. Wu et al., ‘Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China’, Journal of Cleaner Production. 2017, 142, 3236-3242, DOI: 10.1016/j. jclepro.2016.10.146.
  • 10. T. A. S. Lopes, L. M. Queiroz, E. A. Torres, and A. Kiperstok, ‘Low complexity waste-water treatment process in developing countries: A LCA approach to evaluate environmental gains’, Sci Total Environ. 2020, 720, 137593, DOI: 10.1016/j.scitotenv.2020.137593.
  • 11. J. Ling-Chin and A. P. Roskilly, ‘A comparative life cycle assessment of marine power systems’, Energy Conversion & Management. 2016, 127, 477-493.
  • 12. S. S. Hwang et al., ‘Life cycle assessment of alternative ship fuels for coastal ferry operating in Republic of Korea’, Journal of Marine Science and Engineering. 2020, 8(9), DOI: 10.3390/jmse8090660.
  • 13. ISO 14041: Environmental management — life cycle assessment — goal and scope definition — inventory analysis, H. J. Klüppel, 1998.
  • 14. ISO 14042 Environmental management · life cycle assessment · life cycle impact assessment, S. O. Ryding, 1999.
  • 15. ISO 14043: Environmental management · life cycle assessment · life cycle interpretation, H. Lecouls, 1999.
  • 16. H. E. Lindstad, C. F. Rehn, and G. S. Eskeland, ‘Sulphur abatement globally in maritime shipping’, Transportation Research Part D: Transport and Environment. 2017, 57, 303-313, DOI: 10.1016/j.trd.2017.09.028.
  • 17. S. R. Sharvini, Z. Z. Noor, C. S. Chong, L. C. Stringer, and D. Glew, ‘Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies’, Energy. 2020, 191, 116513.1-116513.8, DOI: 10.1016/j.energy.2019.116513.
  • 18. Lamas et al., ‘Numerical model of SO2 scrubbing with seawater applied to marine engines’, Polish Maritime Research. 2016, 23(90), 42-47
  • 19. D. Flagiello, A. Erto, A. Lancia, and F. Di Natale, ‘Experimental and modelling analysis of seawater scrubbers for sulphur dioxide removal from flue-gas’, Fuel. 2018, 214, 254-263, DOI: 10.1016/j.fuel.2017.10.098.
  • 20. A. Pajdak, ‘The effect of structure modification of sodium compounds on the SO2 and HCl removal efficiency from fumes in the conditions of circulating fluidised bed’, Chemical and Biochemical Engineering Quarterly. 2017, 31(3), 261-273, DOI: 10.15255/cabeq.2015.2305.
  • 21. Y. Zhu et al., ‘Shipboard trials of magnesium-based exhaust gas cleaning system’, Ocean Engineering. 2016, 128, 124- 131, DOI: 10.1016/j.oceaneng.2016.10.004.
  • 22. Q. Liu, M. Sun, T. Zhang, and Y. Zhu, ‘Enhanced oxidation of MgSO3 during desulphurisation by a novel spray method in magnesium-based seawater exhaust gas clean system’, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2017, 231(4), 871-876, DOI: 10.1177/1475090216687437.
  • 23. M. Goedkoop, R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. Van Zelm, (2009), ‘ReCiPe 2008 - A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level’, Report I: Characterisation. Vol. 1. Ministerie van VROM. Den Haag
  • 24. M. A. J. Huijbregts et al., ‘ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level’, The International Journal of Life Cycle Assessment. 2016, 22(2), 138-147, DOI: 10.1007/s11367-016-1246-y.
  • 25. Y. H. Dong and S. T. Ng, ‘Comparing the midpoint and endpoint approaches based on ReCiPe—a study of commercial buildings in Hong Kong’, The International Journal of Life Cycle Assessment. 2014, 19(7), 1409-1423, DOI: 10.1007/s11367-014-0743-0.
  • 26. W. Shi et al., ‘Environmental effect of current desulfphurisation technology on fly dust emission in China’, Renewable and Sustainable Energy Reviews. 2017, 72, 1-9, DOI: 10.1016/j.rser.2017.01.033.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aed0c37-b88f-492e-b4ee-73f272d5bbca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.