Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a new approach called the Predictive Kalman Filter (PKF) which predicts and compensates model errors of inertial sensors to improve the accuracy of static alignment without the use of external assistance. The uncertain model error is the main problem in the field as the Micro Electro Mechanical System (MEMS) inertial sensors have bias which change over time, and these errors are not all observable. The proposed filter determines an optimal equivalent model error by minimizing a quadratic penalty function without augmenting the system state space. The optimization procedure enables the filter to decrease both model uncertainty and external disturbances. The paper first presents the complete formulation of the proposed filter. Then, a nonlinear alignment model with a large misalignment angle is considered. Experimental results demonstrate that the new method improves the accuracy and rapidness of the alignment process as the convergence time is reduced from 550 s to 50 s, and the azimuth misalignment angle correctness is decreased from 52′′ ± 47′′ to 4′′ ± 0.02′′.
Czasopismo
Rocznik
Tom
Strony
673--691
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., wzory
Twórcy
autor
- Malek Ashtar University of Technology, Faculty of Electrical & Computer Engineering, Tehran 15875-1774, Iran
autor
- Malek Ashtar University of Technology, Faculty of Electrical & Computer Engineering, Tehran 15875-1774, Iran
Bibliografia
- [1] Britting, K. R. (1971). Inertial navigation systems analysis. Wiley Interscience.
- [2] Chang, L., Li, J., & Li, K. (2016). Optimization-based alignment for strapdown inertial navigation system: Comparison and extension. IEEE Transactions on Aerospace and Electronic Systems, 52(4), 1697-1713. https://doi.org/10.1109/TAES.2016.130824
- [3] Xue, H., Guo, X., & Zhou, Z. (2016). Parameter identification method for SINS initial alignment under inertial frame. Mathematical Problems in Engineering, 2016, 5301242. https://doi.org/10.1155/2016/5301242
- [4] Wang, D., Dong, Y., Li, Q., Wu, J., & Wen, Y. (2018). Estimation of small UAV position and attitude with reliable in-flight initial alignment for MEMS inertial sensors. Metrology and Measurement Systems, 25(3), 603-616. https://doi.org/10.24425/123904
- [5] Ghanbarpourasl, H. (2020). A new robust quaternion-based initial alignment algorithm for stationary strapdown inertial navigation systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(12), 1913-1925. https://doi.org/10.1177/0954410020920473
- [6] Guo, S., Chang, L., Li, Y., & Sun, Y. (2020). Robust fading cubature Kalman filter and its application in initial alignment of SINS. Optik, 202, 163593. https://doi.org/10.1016/j.ijleo.2019.163593
- [7] Zhang, T., Wang, J., Jin, B., & Li, Y. (2019). Application of improved fifth-degree cubature Kalman filter in the nonlinear initial alignment of strapdown inertial navigation system. Review of Scientific Instruments, 90(1), 015111. https://doi.org/10.1063/1.5061790
- [8] Xing, H., Chen, Z., Wang, C., Guo, M., & Zhang, R. (2019). Quaternion-based Complementary Filter for Aiding in the Self-Alignment of the MEMS IMU. 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), USA, 1-4. https://doi.org/10.1109/ISISS.2019.8739728
- [9] Yang, B., Xu, X., Zhang, T., Sun, J., & Liu, X. (2017). Novel SINS initial alignment method under large misalignment angles and uncertain noise based on nonlinear filter. Mathematical Problems in Engineering, 2017, 5917917. https://doi.org/10.1155/2017/5917917
- [10] Sun, J., Xu, X., Liu, Y., Zhang, T., & Li, Y. (2015). Initial alignment of large azimuth misalignment angles in SINS based on adaptive UPF. Sensors, 15(9), 21807-21823. https://doi.org/10.3390/s150921807
- [11] Han, H., Wang, J., & Du, M. (2017). A fast SINS initial alignment method based on RTS forward and backward resolution. Journal of Sensors, 2017, 7161858. https://doi.org/10.1155/2017/7161858
- [12] Kaygısız, B. H., & Şen, B. (2015). In-motion alignment of a low-cost GPS/INS under large heading error. The Journal of Navigation, 68(2), 355-366. https://doi.org/10.1017/S0373463314000629
- [13] Xia, X., & Sun, Q. (2018). Initial alignment algorithm based on the DMCS method in single-axis RSINS with large azimuth misalignment angles for submarines. Sensors, 18(7), 1807-2123. https://doi.org/10.3390/s18072123
- [14] Li, J., Gao, W., Zhang, Y., & Wang, Z. (2018). Gradient Descent Optimization-Based Self-Alignment Method for Stationary SINS. IEEE Transactions on Instrumentation and Measurement, 68(9), 3278-3286. https://doi.org/10.1109/TIM.2018.2878071
- [15] Camacho, E. F., Ramírez, D. R., Limón, D., De La Peña, D. M., & Alamo, T. (2010). Model predictive control techniques for hybrid systems. Annual Reviews in Control, 34(1), 21-31. https://doi.org/10.1016/j.arcontrol.2010.02.002
- [16] Titterton, D., Weston, J. L., & Weston, J. (2004). Strapdown inertial navigation technology. IET. https://doi.org/10.1049/PBRA017E
- [17] Analog Devices. (2018). Tactical Grade Ten Degrees of Freedom Inertial Sensor - ADIS16488A. [Datasheet, Rev. F]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16488A.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aeb1799-5fa5-462d-8c52-9474c1856a2f