PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of the porous boundary and inclined magnetic field on MHD flow in a rectangular duct

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangular duct under the action of an inclined magnetic field with a porous boundary has been investigated. The coupled partial differential equations are transformed into a system of algebraic equations using the finite difference method and are then solved simultaneously using the Gauss Seidal iteration method by programming in Matlab software. Numerical solutions for velocity, induced magnetic field and current density lines are obtained and analyzed for different values of dimensionless parameters namely suction/injection parameter (S), Hartmann number (M) and inclination angle (θ) and are presented graphically.
Rocznik
Strony
33--44
Opis fizyczny
Bibliogr 21 poz., rys.
Twórcy
autor
  • Department of Mathematics, Mariani College, Mariani-785634, Assam, India
Bibliografia
  • [1] Shercliff, J.A. (1953). Steady motion of conducting fluids in pipes under transverse magnetic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 49(1), 136-144.
  • [2] Chang, C., & Lundgren, S. (1961). Duct flow in magnetohydrodynamics. Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 12(2), 100-114.
  • [3] Fendoglu, H., Bozkaya, C., & Tezer-Sezgin, M. (2019). MHD flow in a rectangular duct with a perturbed boundary. Computers & Mathematics with Applications, 77(2), 374-388.
  • [4] Celik, I. (2011). Solution of magnetohydrodynamics flow in a rectangular duct by Chebyshev collocation method. International Journal for Numerical Methods in Fluids, 66, 1325-1340.
  • [5] Kim, C.N. (2018). Numerical analysis of a magnetohydrodynamic duct flow with flow channel insert under a non-uniform magnetic field. Journal of Hydrodynamics, 30, 1134-1142.
  • [6] Chutia, M., & Deka, P.N. (2015). Numerical solution for coupled MHD flow equations in a square duct in the presence of strong inclined magnetic field. International Journal of Advanced Research in Physical Science, 2(9), 20-29.
  • [7] Tayebi, T., & Chamkha, Ali J. (2020). Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. Journal of Thermal Science and Engineering Applications, 12(3), 031009.
  • [8] Ghalambaz, M., Mehryan, S.A.M., Izadpanahi, E., Chamkha, Ali J., & Wen, D. (2019). MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry, 138, 1723-1743.
  • [9] Chamkha, Ali J., Ismael, M., Kasaeipoor, A., & Armaghani. T. (2016). Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy, 18, 50.
  • [10] Alsabery, A.I., Armaghani, T., Chamkha, Ali J., & Hashim, I. (2020). Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alexandria Engineering Journal, 59, 129-148.
  • [11] Raza, J., Mebarek-Oudina, F., & Chamkha, Ali J. (2019). Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15(4), 737-757.
  • [12] Ghalambaz, M., Hashem Zadeh, S.M., Mehryan, S.A.M., Pop, I., & Wen, D. (2020). Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 77(2), 1936-1953.
  • [13] Umavathi, J.C., & Chamkha, Ali J. (2013). Steady natural convection flow in a vertical rectangular duct with isothermal wall boundary conditions. International Journal of Energy and Technology, 5, 1-10.
  • [14] Veera Krishnaa, M., & Chamkha, Ali J. (2019). Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15, 102652.
  • [15] Sai, K.S., & Nageswara Rao, B. (2000). Magnetohydrodynamic flow in a rectangular duct with suction and injection. Acta Mechanica, 140, 57-64.
  • [16] Ramana Murthy, J.V., Sai, K.S., & Bahali, N.K. (2011). Steady flow of micropolar fluid in a rectangular channel under transverse magnetic field with suction. AIP Advances, 1, 032123-1-032123-10.
  • [17] Raman Murthy, J.V. & Bahali, N.K. (2009). Steady flow of micropolar fluid through a circular pipe under a transverse magnetic field with constant suction/injection. International Journal of Applied Mathematics and Mechanics, 5(3), 1-10.
  • [18] Chamkha, Ali J., Dogonchi, A.S. & Ganji, D.D. (2019). Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Advances, 9, 025103.
  • [19] Muller, U., & Buhler, L. (2001). Magnetofluiddynamics in Channels and Containers. Springer.
  • [20] Mathews, J.H., & Fink, F.D. (2009). Numerical Method using Matlab. New Delhi, PHI Learning Private Limited.
  • [21] Al-khawaja, M.J., & Selmi, M. (2010). Matlab Modelling Programming and Simulations. Sciyo, 365-388.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ae85b86-37b9-4abd-8195-0a59b159e6b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.