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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Single target tracking algorithm for lightweight
Siamese networks based on global attention

Zhentao WANG, Xiaowei HE∗∗∗ , and Rao CHENG

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang, 321000, China

Abstract. Object tracking based on Siamese networks has achieved great success in recent years, but increasingly advanced trackers are also
becoming cumbersome, which will severely limit deployment on resource-constrained devices. To solve the above problems, we designed
a network with the same or higher tracking performance as other lightweight models based on the SiamFC lightweight tracking model. At the
same time, for the problems that the SiamFC tracking network is poor in processing similar semantic information, deformation, illumination
change, and scale change, we propose a global attention module and different scale training and testing strategies to solve them. To verify
the effectiveness of the proposed algorithm, this paper has done comparative experiments on the ILSVRC, OTB100, VOT2018 datasets. The
experimental results show that the method proposed in this paper can significantly improve the performance of the benchmark algorithm.
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1. INTRODUCTION
With the development of artificial intelligence, computer vision
and other technologies, convolutional neural network has been
gradually applied to computer vision tasks [1], such as target
detection [2], semantic segmentation [3] and target tracking.
Thanks to the powerful representation ability of convolutional
neural network features, traditional artificially defined features
are gradually replaced with convolutional features. An impor-
tant direction of the tracking framework based on convolutional
neural networks is the Siamese network tracking framework.
Among them, the fully convolutional network Siamese-FC was
proposed by Bertinetto et al. [4]. This end-to-end network has
a small number of parameters and has a faster tracking effect
during forwarding inference. At the same time, the network can
solve part of the work offline, and the algorithm when deployed
in embedded devices, only the forward inference part of the
search area needs to be calculated, which reduces the amount
of calculation for online tracking. Therefore, the lightweight
Siamese network has the advantages of fast and low calcula-
tion amount in embedded deployment. Although Siamese-FC
algorithm has good real-time performance and tracking abil-
ity, it may be difficult for feature matching to accurately iden-
tify real targets in scenes with many similar targets due to the
lack of update mechanism. After Siamese-FC, a series of more
excellent tracking models emerged successively, such as Grad-
Net [5], DaSiamRPN[6]and SiamRPN++ [7]. These models
have higher performance than the models of the Siamese-FC
series, but these network structures are more complex, with
a large number of network parameters, and require a large num-
ber of training sets or a series of improved data enhancement

∗∗∗e-mail: jhhxw@zjnu.edu.cn

© 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2021-07-15, revised 2021-10-09, initially
accepted for publication 2021-10-13, published in June 2022.

strategies. For example, the latest SiamRPN ++ trackers have
7.1 G FLOPS and 11.2M parameters, which makes it difficult to
deploy such a model to resource-constrained devices, while ear-
lier Siamese-FC used only 2.7G FLOPS and 2.3M parameters.
There are two broad approaches to bridging the gap between
an academic model and an industrial deployment of tracking.
One is model compression, and the other is the manual design
of compact models. Existing compression techniques, such as
pruning and quantizing, can reduce the complexity of the model
to varying degrees, but inevitably lead to a great reduction in
the performance of the tracking model [8, 9], so we choose to
design a compact model by hand.

The contributions of this paper are as follows: In this pa-
per, we propose a full convolutional connected network method
based on global attention, which can generate a discriminant
template that is robust to tracking target changes. In this pa-
per, only one ILSVRC dataset is needed as the training set,
rather than a large number of data sets like DaSiamRPN. The
method used can achieve faster convergence with fewer itera-
tions. The starting point of this paper is to improve the simple
tracking models, such as Siamese-FC and CFNet [10], to bet-
ter cope with the challenges of deformation, similar semantic
information, or illumination changes in the tracking process.
Compared with GradNet and DaSiamRPN, these models only
require more common devices to achieve similar performance,
to verify the algorithm proposed in this paper Effectiveness.
This paper conducts comparative experiments on the ILSVRC,
OTB100, VOT2018 datasets. The experimental results show
that the method proposed in this paper can effectively improve
the discriminative ability and robustness of the online tracker
while ensuring a higher tracking speed. Through a series of im-
provements to lightweight SiamFC, the improved trace model
can be deployed to resource-constrained platforms in real-time.
The organizational structure of this paper is as follows: intro-
duction, related work, method, experiment, and conclusion.
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2. RELATED WORKS
The design of traditional target tracking algorithm is based on
the method of correlation filter [11], such as the mobile target
tracking method using improved particle filter [12], the target
tracking method based on color correlation histogram and par-
ticle filter [13], and Kalman filter, a combined adaptive win-
dow anti-occlusion moving target tracking algorithm [14], and
the use of background attention correlation filtering [15] and
three-dimensional Gabor filtering [16] for tracker design. This
method uses training and learning filters to separate the tracked
object from the background to achieve video tracking. How-
ever, these methods can only work well when the background
is simple, and the object deformation is small, and high-quality
online update strategy is required. The extensive application of
deep learning has found new directions for the development
of target tracking, which are mainly reflected in the follow-
ing two aspects: On the one hand, the use of deep features
in the correlation filter can improve the accuracy of the algo-
rithm. The literature [17] extracts deep features and uses the
integrated idea to obtain a stronger tracking model. The litera-
ture [18] introduces continuous convolution operators to solve
the learning problem of continuous space; On the other hand,
directly using deep learning algorithms for target tracking, such
as multi-domain convolutional neural network structure system
network is applied to target tracking [19], and literature [20]
proposed an online visual tracking algorithm based on a tree
structure to manage multiple target appearance models, with
better results. Studies have shown that the direct use of deep
learning algorithms for end-to-end target tracking is more suit-
able for development needs. SO-DLT [21] follows the track-
ing algorithm DLT [22], which uses the deep model for single-
target tracking tasks, adds online fine-tuning strategies to the
tracking data pre-training, and designs a targeted network struc-
ture, and solves the updated Sensitive problems, taking multi-
ple values for specific parameters for smoothing, but it is dif-
ficult to meet real-time requirements. literature [23] regards
target tracking as a regression problem and uses CNN to di-
rectly return the location of the tracking object. The Siamese
candidate region generation network [24] is the target track-
ing problem is regarded as a target detection problem, and
the idea of regional regression in the fast regional convolu-
tional neural network [25] is used to locate the position of
the tracked object. The fully convolutional Siamese neural net-
work (Siamese-FC) [26] regards tracking as similarity learn-
ing, learning a discriminative model to locate the position of
the object’s center point through a deep convolutional neural
network. Although the Siamese-RPN [27] and GOTURN [28]
algorithms have high tracking capabilities, the former requires
more parameters to be set, so a large amount of training data
will be added, and the latter cannot meet the real-time require-
ments.

Literature [29] proposed the use of Siamese neural networks
for similarity measurement to solve the problem of face recog-
nition. The two sub-networks of the Siamese network obtain
two identical sub-networks through weight sharing and then
judge the similarity of the two inputs. The Siamese network
has the characteristics of naturally increasing training data and

provides a way to solve problems in tracking areas with less
training data. Literature [30] first proposed a target tracking al-
gorithm based on a Siamese network. The algorithm treats tar-
get tracking as a matching problem through a neural network,
but it needs to process a large number of candidate frames each
time, so it takes a long time. Literature [31] proposed a real-time
Siamese-FC algorithm, which is also a target tracking algorithm
based on the Siamese network, which can select and locate can-
didate images in a larger search image. The network training is
carried out in a full convolution method. Finally, the two in-
put relationships are represented by return values. A high score
indicates that the two input objects are the same; a low score
indicates that the two input objects are different. The network
structure of Siamese-FC is shown in Fig. 1, where input x often
represents a target with a given first frame. This sub-network
is defined as a template branch, the other sub-network is de-
fined as a detection branch and receives the input of the current
frame, usually expressed by z. Both branches of Siamese-FC
use deep convolution to perform feature extraction transforma-
tion, denoted by ϕ , and then f (x,z) = g(ϕ(x),ϕ(z)) to calcu-
late the correlation between the two inputs, where g represents
the convolution operation, ϕ(x), ϕ(z) represents the convolu-
tion kernel.

The target of the first frame

bounding box

127×127×3

Input of the current frame

255×255×3

Deep convolution for feature

extraction

22×22×128

6×6×128

17×17×1

Deep convolution for feature

extraction

 

Fig. 1. Siamese-FC structure

The literature [32] presents LightTrack, which uses neural
architecture search (NAS) to design more lightweight and ef-
ficient object trackers. Comprehensive experiments show that
their LightTrack is effective. It can find trackers that achieve
superior performance compared to handcrafted SOTA track-
ers, such as SiamRPN++ and Ocean while using much fewer
model Flops and parameters. However, their starting point is
still the SiamRPN++ series model with a high number of pa-
rameters, and NAS has high equipment requirements and a long
search time, which is obviously inconsistent with our original
design.

3. THE METHOD OF THIS PAPER
The main goal of this paper is to optimize the feature extraction
of the network by introducing mechanisms such as attention so
that more stable features can be extracted, and the problem that
the previous algorithms are easily affected by external condi-
tions can be solved. This article is based on the Siamese-FC
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Fig. 2. The global attention target tracking network

algorithm. The algorithm’s deep learning framework ensures
real-time performance. The network is increased into two paral-
lel subnets, one of which integrates and optimizes features, and
adds a global attention module, so that the extracted features
have more effective information such as space and semantics,
thereby improving the tracking accuracy of the algorithm; The
other subnet improves the recognition ability of target features
by adding self-attention mechanism, which enables the algo-
rithm to distinguish between target and local interference.

The overall structure of this paper is shown in Fig. 2, which
mainly includes the basic framework of the Siamese-FC net-
work, a feature fusion module, a global attention module that
integrates spatial attention and channel attention, and a self-
attention module. The algorithm is composed of two parts: the
subnetwork of feature fusion and global attention module and
the self-attention subnetwork. The response graph obtained by
the infrared image through the two sub-networks is then fused
by the average method to obtain the final response graph.

3.1. Self-attention model
In the self-attention subnetwork, we use the compression exci-
tation network mechanism and use the global information to
explicitly model the dynamic and nonlinear dependence be-
tween channels, which can simplify the learning process and
significantly enhance the representation ability of the network.
The compression excitation network first performs the Squeeze
operation. The operation object is the intermediate result ob-
tained after the traditional convolution operation. Its purpose is
to compress the spatial dimension and change the channel in-
formation of each dimension into a real number with a global
receptive field. The output dimension is the same as the num-
ber of input feature channels; secondly, an Excitation opera-
tion similar to the gate mechanism in the recurrent network is
performed, and the correlation between the feature channels is
explicitly modeled according to the channel parameter w; fi-
nally, the Excitation output the weight of is used as a represen-
tative of the importance of each channel after feature selection.
Reweight performs item-by-item multiplication and weighting
on the original features to complete the recalibration of the

original features in the channel dimension. SENet has a sim-
ple structure and can be used as an independent module to be
embedded in different network structures. Its structure is shown
in Fig. 3.
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Fig. 3. SENet structure

3.2. Multi-layer feature fusion
The previous Siamese networks [33–35] used the features ob-
tained in the last layer of the network as output features, which
is enough to represent the tracking target. Since the deep feature
receptive field is large, it has discriminative semantic feature in-
formation, and the resolution is low, while the shallow feature
receptive field is small, it has strong spatial structure informa-
tion, and the resolution is high, so it is not enough to use the
last layer of features alone. Feature fusion is an optimization
operation for feature maps. The output features of multiple con-
volutional layers are cascaded at a uniform resolution to obtain
a new fusion feature map with more channels, that is, more im-
age characterization information [36]. When selecting feature
maps for fusion, considering that although the first two layers
of features contain rich spatial information, they are large in
size, and the unification process will lose too much feature in-
formation. Starting from the third layer, using the last three lay-
ers of features to perform Fusion not only solves the problem of
excessive information loss, but also contains rich spatial and se-
mantic information. Therefore, the algorithm in this paper fuses
the last three features of the Siamese-FC feature extraction net-
work. Of course, we also confirmed the effectiveness of convo-
lutional feature fusion through ablation experiments. The shal-
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low information is used to locate the target location, and the
deep information is used to distinguish different objects. To ef-
fectively fuse the multi-layer features with different resolutions
together, the shallow features are pooled to the maximum to
obtain the same resolution as the deep features, and after nor-
malization to balance the effects of the three-layer features, the
connection is obtained Fusion feature map, considering that the
dimension of the feature map is too large, after the connection,
1×1 convolution is used to reduce the dimensionality of the fu-
sion feature map to reduce the training time. The fusion process
can be expressed as:

ffusion = concati=3,4,5 {bn [mp( fconvi)]} , (1)

ffinal = conv( ffusion) . (2)

In the above formula: fconv3, fconv4, fconv5, ffusion, and ffinal
represent the output features of the corresponding convolutional
layer, the fused features, and the final features after dimension-
ality reduction. The mp represents the maximum pooling oper-
ation. The bn represents batch normalization. The concat repre-
sents features Connect and perform feature concatenation oper-
ation. The size of the fused feature map fusion obtained in this
step is 49×49×832; conv represents the convolution of 1×1,
and the final feature map final size obtained is 49×49×256.

3.3. Global attention module
After obtaining the fused multi-layer features through (1) and
(2), it already contains both spatial information and semantic
information. On this basis, we hope that the network model
can have global awareness, that is, it can deal with the target
deformation, rotation, and other changes while assigning cor-
responding weights to characteristic channels to obtain the im-
portance of each channel so that the algorithm shows robustness
to both space and channel information. In response to this prob-
lem, this article established a global attention module, as shown
in Fig. 4.
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Fig. 4. Global attention module structure

As an independent module that can be inserted into the con-
volutional neural network, the global attention module takes the
feature map as the input and outputs it in the original size after
affine transformation, to optimize the feature map.

The Fig. 4 here shows a global attention module applied
to the feature activity from a convolutional layer in a deep
network model, U . Information in the diagram flows from
left to right, and U is processed with separate local (Flocal)
and global (Fglobal) operators to derive the local- and global-
attention masks, which is integrated into the attention activity A.

Attention is applied to the original activity, with elementwise
multiplication (Fscale), to yield U ′.

The global attention module learns to combine local saliency
with global contextual information to guide attention towards
image regions that are diagnostic for object detection. Spatial
attention and channel attention, which are used to capture pixel-
level pair relationships and channel dependencies, respectively.
Fusing them together gives better performance than their sepa-
rate implementations, which inevitably increases computational
overhead. The effect of the global attention module will be dis-
played in the heat map of the experimental part.

The global attention module modulates an input layer ac-
tivity U with an attention mask A of the same dimension as
the input, which captures a combination of global and local
forms of attention. Here, the spatial height, width and the num-
ber of the features are represented as H, W , C respectively
s.t. U,A ∈ RH×W×C . The global attention module proposed in
this paper is based on the SE module (Hu et al., 2017 [37]).
Here global attention is represented by Fglobal in this model
and yields the global feature attention vector g ∈ R1×1×C.
Its generation process can be roughly decomposed into two
steps. Firstly, channel-by-channel statistics. Secondly, the data
of channel-by-channel statistics are nonlinear transformed by
multi-layer perceptron (MLP). Summary statistics are com-
puted with a global average pooling applied to the feature
maps. Here, U = [uk]k=1,...,C can yield vector P = (Pk)k=1,...,C,

Pk =
1

WH

W

∑
x=1

H

∑
y=1

ukxy. Next, two layers of MLP are used to re-

duce and extend the dimensions of P. An intervening nonlin-
earity enables the module to learn complex dependencies be-
tween channels. The reducing of MLP is applied to vector P
by the operator wreduce ∈ R

c
r×C, leading to a reduction in the

dimension of P. This is followed by an expansion operation
wexpand ∈ RC× c

r , return to original, dimensional space.

g = wexpand
(
σ(wreduce(P))

)
. (3)

Here σ is a corrected linear function (Relu), the “reduction
ratio” r is a super parameter, and it is better to set r to 4 in the
experimental test.

After the global (channel) attention module, we introduce the
spatial attention module to focus on where features make sense.
The module consists of three sub-modules, namely positioning
network, grid generator, and sampler, as shown in the spatial
transformation section in Fig. 4. Firstly, the location network
receives the input feature map U and obtains the change param-
eters after passing through the hidden layer θ . In getting θ , after
that, the matrix operation is further carried out, and the coordi-
nates of the original feature graph U are obtained by taking the
coordinates of the pixel in the target feature graph S (Fig. 5) as
the independent variables, to obtain the pixel value of the point
in S.

S = vcollapse ∗
(
σ(vreduce ∗U)

)
. (4)

Here, convolution is represented as ∗, vcollapse ∈ R1×1× c
r×1, and

vreduce ∈ R1×1×C× c
r . The Fintegrate operation consolidates the
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output of the local and global path to generate attention volume
A ∈ RH×W×C. A lot of times, it wasn’t clear whether the model
would benefit more from Flocal or Fglobal attention, or whether
tasks would perform better if they were combined or multiplied,
so we use both addition and multiplication for both types of at-
tention, which have equal weight. To combine attention activ-
ities g and S, they are first tiled to produce G∗, S∗ ∈ RH×W×C.
Finally, we calculate the attention activities of a global attention
module as:

Ah,w,c = ς
(
(G∗h,w,c +S∗h,w,c)+(G∗h,w,c ·S∗h,w,c)

)
. (5)

The ς of equation (5) is set to the tanh function, which squashes
activities in the range [–1, 1]. Finally, attention is applied by
Fscale as:

U ′ =U�A. (6)

3.4. Loss function
We used the Logistic loss function to optimize the tracker we
proposed.

`(y,v) = log(1+ exp(−yv)), (7)

L(y,v) =
1
|D| ∑u∈D

`(y[u], v[u]) . (8)

Here, v is tracking a single response value of the network out-
put, y is the actual value, and y ∈ {−1,+1}, D has generated
heatmap, u for a certain value in D, |D| for the size of the
heatmap. The ground-truth in the heatmap is marked according
to the following formula:

y[u] =

{
+1, if k‖u− c‖ ≤ R,

−1, otherwise.
(9)

Formula 9c for objects in the center of the heatmap, u for
any point in the heatmap, ||u− c|| is the distance between u
and c, here distance calculation using Euclidean distance, R for
distance threshold, k for heatmap multiples of narrow after net-
work. k is the multiple of the heatmap narrowed after passing
through the network.

The convolution parameter θ is obtained by using SGD
method to minimize the loss function:

argmin
θ

Ez,x,yL(y, f (z,x : θ)) . (10)

4. EXPERIMENTS
First of all, we provide experimental details. Second, our meth-
ods are compared with state-of-the-art trackers. Meanwhile, we
carry out ablation studies to analyze the modules and frame-
work of the model.

4.1. Implementation details
The network structure: the backbone of the Siamese network is
AlexNet. To be fairer in comparison with the original bench-
mark tracker, our tracker was also trained using ILSVRC2015
datasets. The dataset in this article is the video data set of the

ImageNet Visual Recognition Challenge (ILSVRC). As part of
the new object detection in the video challenge, it provides
about 4500 (divided into training set and validation set) con-
taining 30 different images of animals and vehicles. Video in-
formation, more than one million frames with annotations. The
advantage of the ILSVRC dataset in video tracking is that it not
only contains more data but the scenes and objects it depicts are
different from those in the classic tracking benchmarks. There-
fore, this paper chooses the ILSVRC data set to train the deep
tracking model to have more generalization ability. In the train-
ing process, the data frames used for training are extracted from
the 4417 frames of video of Imagenet, and there are more than
2 million labeled bounding boxes in total. The data set is ran-
domly divided into three parts: 70% of the training set, 10%
of the validation set, and 20% of the test set. Two performance
indicators are used to evaluate the tracking effect: accuracy (ac-
curacy) and frame rate (FPS). The former is calculated in the
form of average IoU, and the latter is the number of pictures
that can be processed per second.

The proposed global attention network is implemented in
Python with Pytorch on RTX3090. The software configuration:
Ubuntu18.0, CUDA11.2, cuDNN11.2, Pycharm.

4.2. Evaluation of single-size test data
We know that in the tracking models of SiamFC and CFNet,
the size of the target box of the first frame image is fixed at
127×127×3, and the size of the search image is 255×255×3.
We try to explore whether there are drawbacks in the method
of fixing the size of training and testing data. The template
image of each frame is extracted offline, and the detection
image size is set as follows: For a fixed S1 ∈ [S1min,S1max],
S2 ∈ [S2min,S2max], the tracking performance of the independent
network model obtained in Table 1 is evaluated, and the results
are listed in Table 3. S1 represents the clipping size of the tem-
plate branch in the training dataset, S2 represents the clipping
size of the search branch image in the training dataset, Q1 repre-
sents the clipping size of the template branch in the test dataset,
and Q2 represents the clipping size of search branch image in
the test dataset.

It can be seen from Table 1 that the multi-scale training
network performs better in the size fluctuation test (compared
with the fixed training size). That is to say, when we input not
only multi-scale training data but also multi-scale test data, our
model will get better performance. The last group of multi-scale
network training has the best performance, the scale fluctua-
tion performance is better than the fixed minimum edge per-
formance. That is, the cutting size of the template frame in the
training set changes in the interval [127, 255], and the cutting
size of the search frame changes in the interval [255, 383]. In
addition to retaining the cutting size of the template frame be-
fore the test, the cutting size of the template frame is 127×127,
and the search frame is 255×255. A test policy with test tem-
plate frame size 191× 191, search frame size 319× 319, and
test template frame size 255×255, search frame size 383×383
have also been added. The accuracy rate of the optimal single-
network model in this paper is 0.610 on the verification set and
0.651 on the test set.
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Table 1
Network performance of multi-scale

Picture minimum size
Accuracy Speed

train (S1, S2) test (Q1,Q2) (frame·s−1)

127, 255
(111, 239),
(127, 255),
(143, 271)

0.530 158

127, 255
(111, 239),
(127, 255),
(143, 271)

0.531 157

255, 383
(239, 267),
(255, 383),
(271, 399)

0.532

[127, 255],
[255, 383]

(127, 255),
(191, 319),
(255, 383)

0.545

127, 255
(111, 239),
(127, 255),
(143, 271)

0.563 157

255, 383
(239, 267),
(255, 383),
(271, 399)

0.574

[127, 255],
[255, 383]

(127, 255),
(191, 319),
(255, 383)

0.580

127, 255
(111, 239),
(127, 255),
(143, 271)

0.586 156

255, 383
(239, 267),
(255, 383),
(271, 399)

0.617

[127, 255],
[255, 383]

(127, 255),
(191, 319),
(255, 383)

0.629

127, 255
(111, 239),
(127, 255),
(143, 271)

0.637 157

255, 383
(239, 267),
(255, 383),
(271, 399)

0.643

[127, 255],
[255, 383]

(127, 255),
(191, 319),
(255, 383)

0.651 157

Table 2 compares the test results of different tracking algo-
rithms. It can be seen from Table 3 that both the accuracy and
the speed of processing pictures are not as good as the Ours al-
gorithm in terms of accuracy and processing speed. Compared
with the Siamese-FC algorithm, our algorithm has higher accu-
racy and accuracy. The performance can reach 0.6511 without
loss of real-time performance, and the image processing speed
FPS can still reach 157 frames/s. Therefore, the Siam-SEFC
tracking model has good tracking performance.

To sum up, this module aims at the Siamese-FC algorithm
without a strategy for learning object size information changes.
By introducing the SENet module into the Siamese-FC back-

Table 2
Comparison of test results of different tracking algorithms

Method Accuracy Speed (frame·s−1)

DAT [38] 0.4720 115

SENet [37] 0.5399 152

Siamese-FC-3s [4] 0.5950 187

Siamese-FC [4] 0.6270 158

Siam-SEFC (Ours) 0.6511 157

bone network. Our algorithm uses the characteristics of the
SENet module to learn the central information features of the
object while adding the learning of spatial information features
and uses multi-scale data for training and testing, which fur-
ther adds information about the size of the object on the ob-
ject scale. Through single-size, multi-size test experiments and
comparison experiments with other tracking methods, the effect
of Siam-SEFC in video tracking is evaluated. The results show
that the Siam-SEFC model not only has good accuracy on the
ILSVRC15 dataset but also meets real-time performance.

4.3. Comparison with the state of the arts
Extensive experiments are conducted to evaluate the propo-
sed tracker against other state-of-the-arts VOT2018, OTB100
benchmarks. All the experiments were carried out through the
official toolkits.

OTB Benchmarks. OTB100 contains 100 different video se-
quences and is often used to evaluate the performance of track-
ers. The evaluation of OTB follows the standard protocols and
uses two metrics to rank trackers i.e., precision plot and success
plot.

The proposed tracking algorithm is compared with other real-
time tracking algorithms based on the OTB evaluation bench-
mark. Real-time tracking algorithms Siam-Fc, DaSiamRPN,
CFNet, and GradNet are evaluated once (OPE). The accuracy
and success rate are shown in Fig. 5 and Fig. 6.

Figure 7 shows the success rate of the improved model under
motion blur. Figure 8 shows the precision rate of the improved
model under motion blur.

As shown in Table 3, our tracker shows a good performance.
In a more compact architecture, its performance is very close
to GradNet in OTB100. The baseline indicates that the network
shuts down the global attention module and the self-attention
module, and only adds the strategy of feature fusion.

Table 3
Contrast results of the tracker

Tracker name Success Norm Precision Precision

DaSiamRPN[6] 0.658 0.000 0.880
Ours 0.639 0.000 0.845

GradNet[5] 0.639 0.000 0.861

Baseline 0.601 0.000 0.794

CFNet[10] 0.587 0.000 0.778

SiamFC[4] 0.587 0.000 0.772
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Fig. 5. Graph of success

Fig. 6. Graph of precision

Bold data indicates the best results, and underlined data in-
dicates the second best. The baseline indicates that the network
shuts down the global awareness module and the self-attention
module, and only adds the strategy of feature fusion

It can be seen that compared with CFNet and SiamFC, it
has some improvement effect. On Suc score and Pre. score,
the baseline tracker has an improvement of 1.4% and 1.6%
compared to CFNet. When the self-attention module and the
global awareness module are turned on, the proposed tracking
algorithm (Ours) Suc and Pre reach 0.640 and 0.845 respec-
tively, which are 5.2% and 6.7% higher than that of CFNet
and 3.8% and 5.1% higher than that of the baseline. Judg-
ing from the dataset OTB100, the tracking algorithm we pro-
posed has a certain improvement effect compared with the
original model. Although it is regrettable that there is a cer-
tain gap between the performance of the tracker we proposed
and that of DaSiamRPN in OTB100, after all, in order to
make a more fair comparison with the benchmark (Siamese-
FC) in this paper, we only used ILSVRC2015-VID for the

Fig. 7. Graph of success under motion blur

Fig. 8. Graph of precision under motion blur

training dataset. It is important to note that the original in-
tention of this work is to use the lightest possible track-
ing model, which is as close as possible to the performance
of some of the best recent tracking algorithms while using
only one training dataset. In addition to ILSVRC2015-vid and
YouTube-BB data sets, DaSiamRPN also introduced static im-
ages from ILSVRC2015 and COCO datasets and expanded the
types of positive sample pairs through a series of enhance-
ment methods (translation, resizing, grayscale, etc.) to im-
prove the discrimination ability of the tracking network. So, it
makes perfect sense that our tracker is slightly inferior to DaSi-
amRPN.

In Fig. 9, in the Soccer and Bird 1 video sequences, both the
benchmark networks SiamFc and CFNet in this paper failed to
track the target when they encountered interference with similar
semantic information while tracking, and our proposed tracker
(BoundingBox in red) was able to meet this challenge well. In
the MotorRolling video sequence, the benchmark network is
also unable to successfully deal with the challenge of rotation,
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and the tracker we proposed can still deal with it well. The good
performance of the proposed tracker benefits from the comple-
mentarity of more details extracted from the self attention mod-
ule and the global attention module. Of course, multi-layer fea-
ture fusion also has some effects.

Fig. 9. Different tracking algorithms can be compared and viewed

To better analyze the tracking performance of the proposed
tracker, we used actual experiments to challenge the tracker
with different attributes, such as fast movement, in-plane ro-
tation, scale transformation, illumination change, and beyond
the field of view Fig. 10 shows the qualitative results, which
show that the proposed tracker can complete the tracking
challenge task under the condition of guaranteed verification
time.

Fig. 10. Multi-attribute target tracking test in real scenario

In Fig. 10, the experimenter holds the target (circular mirror)
to be tracked and performs a series of rapid movements, plane
rotation, scale scaling, and exposure processing on the target
(circular mirror). It can be seen that the tracking algorithm pro-
posed in this paper can complete the tracking task well under
these challenges.

4.4. Ablation experiments
In order to verify the effectiveness of the multi-layer feature
fusion and global awareness module, we conducted an eval-

uation experiment on the dataset VOT2018. In order to more
intuitively reflect the effect of these modules, we conducted
heatmap visualization on the tracked video frames, as shown
in Fig. 11.

Fig. 11. Comparison of thermal map effects of the modified module
ablation experiment on the VOT2018 dataset

VOT Benchmarks. Our proposed tracker is evaluated in
VOT2018 which contain 60 various challenges sequences to
evaluate the performance. The VOT provides expected average
overlap (EAO), accuracy (A), and robustness (R) as metrics. Ta-
ble 4 reports the EAO on VOT2018, which shows the competi-
tive results with real-time speed. On the EAO of VOT2018, the
proposed tracking algorithm has an improvement of 6% com-
pared to SiamFc.
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Table 4
Performance comparison on Vot2018 dataset

Traker
VOT2018

EAO A R

CCASiam [39] 0.287 0.540 0.380

Ours+MLFF+GAM 0.266 0.491 0.435

Ours+MLFF-GAM 0.234 0.489 0.458

Ours-MLFF-GAM 0.218 0.480 0.502

SA-Siam [40] 0.236 0.500 0.459

SiamFC [4] 0.206 0.511 0.627

The ablation experiment of this part is based on the SiamFC
algorithm.

When the multi-layer feature fusion is not used and the
global attention module is removed, the proposed model still
has a 1.2% EAO improvement compared to the benchmark al-
gorithm. When the multi-layer feature fusion is enabled, the
proposed algorithm still has a 1.6% EAO improvement. When
the global attention module (GAM) is enabled, our algorithm
continues to have a 3.2% EAO improvement. It can be seen
from the ablation experiment that the improvement strategies
proposed in this paper are all effective, and the improvement
effect brought by the global attention module is the most obvi-
ous.

Figure 11 in each group of the first row of the video se-
quence of video images said VOT2018 test video sequences,
the second-row heat maps for open global attention module and
feature fusion tracking network module performance, after the
third global attention module behavior was off online track-
ing performance, it can be seen that each group of the third
row compared the heat effect of a drop in the second video se-
quence.

Red font is best, green font is second. MIFF represents multi-
layer feature fusion, GAM represents globally attention mod-
ule, and plus and minus signs indicate whether or not these
modules are turned on

5. CONCLUSIONS
The tracking algorithm based on Siamese networks is easy to
fail in the face of deformation, similar semantic information
interference and scale change. To solve this problem, a full-
convolution Siamese lightweight network method based on
global awareness is proposed in this paper, which can be up-
dated online in real time. The SiamFC algorithm, which has
no change in the size information of strategy learning ob-
jects, is targeted in this paper. By introducing the SeNet mod-
ule into the SiamFC backbone network, the features of the
SeNet module are used to learn the central information fea-
tures of the object, and the multi-scale data are used for train-
ing and testing, and the size information of the object is fur-
ther added to the object scale. In addition, features were ex-
tracted by the AlexNet L3 layer, L4 layer, and L5 layer, and
feature fusion was performed by a multi-scale feature fusion
module. In this way, improved networks can be simpler and

better able to learn effective features. And we also propose
a global attention module. As an independent module that can
be inserted into the convolutional neural network, the global
attention module takes the feature map as the input and out-
puts it in the original size after affine transformation, to op-
timize the feature map. In order to verify the effectiveness of
the proposed algorithm, this paper has done comparative ex-
periments on the ILSVRC, OTB100, Vot2018 datasets. The ex-
perimental results show that the method proposed in this paper
can significantly improve the performance of the benchmark al-
gorithm. Although the algorithm we proposed has significantly
improved its performance compared with the benchmark net-
work, there are still big differences compared with some better
tracking algorithms at present. The main reason for the differ-
ence is that our work uses a SiamFC lightweight framework
rather than a complex network model like SiamRPN, and we
use only one training dataset rather than multiple datasets like
other tracking algorithms. Our original intention is to allow the
lightweight SIAMFC with low equipment requirements to meet
or even exceed some excellent tracking algorithms with com-
plex structures and extensive training, thus closing the gap be-
tween the academic model and the industrial deployment of tar-
get tracking.

There is still the problem of tracking failure in some video
sequences of VOT2018, which may be the challenge to be com-
pleted in the future. Perhaps improvements to better frame-
works such as SiamRPN ++ will overcome these trace failures.
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