Identyfikatory
Warianty tytułu
Application of swarm intelligence algorithms to optimization of control system models
Konferencja
XV Seminarium Zastosowanie komputerów w nauce i technice Gdańsk 2015 (XV; 2015, Gdańsk, Polska)
Języki publikacji
Abstrakty
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Rocznik
Tom
Strony
97--102
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
Bibliografia
- 1. Beni G., Wang J.: Swarm Intelligence, Proceedings of the Seventh Annual Meeting of the Robotic Society of Japan, pp. 425-428, RSJ Press, Tokyo, 1989.
- 2. Hackwood S., Beni G.: Self-organization of sensors for swarm intelligence, Proceedings of IEEE International Conference on Robotics and Automation, pp. 819-829, Los Alamitos, CA, 1992.
- 3. Goldberg D.E.: Algorytmy genetyczne i ich zastosowania, WNT, Warszawa, 1998.
- 4. Storn R., Price K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359, 1997.
- 5. Dorigo M., Stutzle T.: Ant colony optimization, MIT Press, 2004.
- 6. Kennedy J., Eberhart R.: Particle swarm optimization, Proceedings of the International Conference on Neural Network, pp. 1942-1948, 1995.
- 7. Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., Zaidi M.: The bees algorithm, Technical Note, Manufacturing Engineering Center, Cardiff University, Cardiff, UK, 2005.
- 8. Karaboga D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
- 9. Karaboga D., Basturk B.: A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation, Vol. 214, No. 1, pp. 108-132, 2009.
- 10. Dorigo M.: Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy, 1992.
- 11. Dorigo M., Maniezzo V, Colorni A.: The Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26, No. 1, pp. 1-13, 1996.
- 12. Toksari M.D.: Ant colony optimization for finding the global minimum, Applied Mathematics and Computation, Vol. 176, No. 5, pp. 308-316, 2006.
- 13. Engelbrecht A.: Particle Swarm Optimization: Velocity Initialization, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, June 10-15, pp. 70-77, 2012.
- 14. Helwig S., Branke J., Mostaghim S.: Experimental analysis of bound handling techniques in particle swarm optimization,” IEEE Transactions on Evolutionary Computation, Vol. 17, No. 2, pp. 259-271, 2013.
- 15. Chen S., Montgomery J., Bolufé-Röhler A., Gonzalez- Fernandez Y.: Standard particle swarm optimization on the CEC2013 real parameter optimization benchmark functions (revised), Technical Report, School of Information Technology, York University, Toronto, Ontario, December 2013.
- 16. Tomera M.: Swarm intelligence applied to identification of nonlinear ship steering model, 2nd IEEE International Conference on Cybernetics (CYBCONF), Gdynia, June 2015, pp. 133-139.
- 17. Tomera M.: Badanie i analiza algorytmów rojowych w optymalizacji parametrów regulatora kursu statku, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, Nr 46/2015, s. 103-106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ad7f721-f7b4-4443-82c6-5846ef997750