PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Galvanic Sewage Sludge to Produce Alkali-Activated Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of civilization is causing an increase in the amount of industrial wastes, especially hazardous wastes. Among the methods of utilisation of this type of waste, the methods of stabilisation and solidification deserve attention, which enable the transformation of hazardous waste and the heavy metals it contains into an environmentally safe form, that is, immobilised. This paper proposes a method to stabilize and solidify galvanic sludge using geopolymerization reactions. The surface morphology was studied, and the chemical composition was analyzed using the SEM-EDS method. The presence of characteristic functional groups on the surface of the galvanic sludge and the geopolymer obtained on its basis was determined by FTIR spectroscopic analysis. Moreover, we evaluated of the recovery of selected heavy metals were performed on the basis of leaching tests. It was found that, as a consequence of geopolymerization of galvanic sludge, this hazardous waste is transformed in such a way that the heavy metals it contains, which occur in the form of soluble compounds are immobilised. In relation to the metals analyzed, reduction in solubility were obtained at a practical level of 100% for Zn and Mn, for the remaining metals, respectively, 94% for Cu and in the range of 40 to 90% for Pb. Analysis of the FTIR spectra showed that the ions of the metals studied were permanently immobilised in the aluminosilicate structure of the geopolymers obtained. This shows, that galvanic sewage sludge, as hazardous waste, is chemically transformed into inert waste that may be deposited in landfills.
Słowa kluczowe
Rocznik
Strony
305--313
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Alvee A.R., Malinda R., Akbar A.M., Ashar R.D., Rahmawati C. Alomayri T., Raza A., Shaikh F.U.A. 2022. Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Studies in Construction Materials, 16, e00792. https://doi.org/10.1016/j. cscm.2021.e00792
  • 2. Ayilara M.S., Olanrewaju O.S., Babalola O.O., Odeyemi O. 2020. Waste management through composition: Challenges and Potentials. Sustainability, 12, 4456-4479. https://doi.org/10.3390/su12114456
  • 3. Bednarik M., Vondruska M., Koutny M. 2005. Stabilization/solidification of galvanic sludges by asphalt emulsions. Journal of Hazardous Materials, 122, 139-145. https://doi.org/10.1016/j. jhazmat.2005.03.021
  • 4. Basegio T., Beck Leão A.P., Bernardes A.M., Bergmann C.P. 2009. Vitrification: An alternative to minimize environmental impact caused by leather industry wastes. Journal of Hazardous Materials, 165, 604-611. https://doi.org/10.1016/j. jhazmat.2008.10.045
  • 5. El-Eswed B. 2020. Chemical evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. Journal of Environmental Chemical Engineering, 8(5), 104194. https://doi.org/10.1016/j.jece.2020.104194
  • 6. El-Eswed B., Aldagag O., Khalili F. 2017. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II),Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Applied Clay Science, 140, 148-156. https://doi.org/10.1016/j.clay.2017.02.003
  • 7. Galas D., Kalembkiewicz J., Sitarz-Palczak E. 2016. Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland. Contemporary Trends in Geoscience, 5, 83-91. https://doi. org/10.1515/ctg-2016-0006
  • 8. Irisawa T., Iwamura R., Kozawa Y., Kobayashi S., Tanabe Y. 2021. Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers. Carbon, 175, 605. https://doi.org/10.1016/j. carbon.2021.01.042
  • 9. Jarnerud T., Karasev A.V., Jonsson P.G. 2021. Neutralization of acidic wastewater from steel plant by using CaO-containing waste materials from pulp and paper industries. Materials, 14, 2653. https:// doi.org/10.3390/ma14102653
  • 10. Jeyasundar P.G.S.A., Ali A., Zhang Z. 2020. Waste treatment approaches for environmental sustainability. Microorganisms for Sustainable Environmental and Health, 6, 119-135. https://doi.org/10.1016/ B978-0-12-819001-2.00006-1
  • 11. Jia D.E., He P., Wang M., Yan S. 2020. Geopolymer and geopolymer matrix composites. Springer Series in Material Science, 311, 1-14.
  • 12. Kosanović C., Bosnar S., Subotić B., Svetličić V., Mišić T., Dražić G., Havancsák K. 2008. Study of the microstructure of amorphous aluminosilicate gel before and after its hydrothermal treatment. Microporous and Mesoporous Materials, 110, 177-185. https://doi.org/10.1016/j.micromeso.2007.06.007
  • 13. Letcher T.M., Vallero D.A. 2019. Waste: A Handbook for Management. 2nd ed. Elsevier LTD, Oxford. https://doi.org/10.1016/C2017-0-02201-2
  • 14. Li M., Xu J., Li B. 2018. Analysis of development of hazardous waste disposal technology in China. IOP Conference Series: Earth Environmental Science 178. https://doi.org/10.1088/1755-1315/178/1/012027
  • 15. Luo X., Liu G., Xia Y., Chen L., Jiang Z., Zheng H., Wang Z. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China. Journal of Soil and Sediments, 17, 780-789. https://doi. org/10.1007/s11368-016-1361-1
  • 16. Luz C.A., Rocha J.C., Cheriaf M., Pera J. 2009. Valorization of galvanic sludge in sulfoaluminate cement. Construction and Building Materials, 23, 595-601. https://doi.org/10.1016/j.conbuildmat.2008.04.004
  • 17. Mikuła J., Łach M., Mierzwiński D. 2017. Ways of managing ashes and slags from waste incineration plants. Ecological Engineering, 18, 37-46.
  • 18. Mwembeshi M.M., Kent C.A., Salhi S. 2004. Flexible on-line modeling and control of pH in waste neutralization reactors. Chemical Engineering and Technology, 27, 130-138. https://doi.org/10.1002/ ceat.200401660
  • 19. Nergis D.D.B., Abdullah M.M.A.B., Vizureanu P., Thair M.F.M. 2018. Geopolymers and their uses: review. IOP Conference Series: Materials Science and Engineering 374. https://doi. org/10.1088/1757-899X/374/1/01201
  • 20. Nohajerani A., Suter D., Jeffrey-Bailey T., Song T., Arulrajaah A., Horpibulsuk S., Law D. 2019. Recycling waste materials in geopolymer concrete. Clean Technologies and Environmental Policy, 21, 493515. https://doi.org/10.1007/s10098-018-01660-2
  • 21. Puga A.P., Melo L.C.A., Aparecida de Abreu C., Coscione A.R., Paz-Ferreiro J. 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research, 164, 2533. https://doi.org/10.1016/j.still.2016.01.008
  • 22. Sitarz-Palczak E., Kalembkiewicz J. 2021. The influence of physical modification on the sorption properties of geopolymers obtained from halloysite. Polish Journal of Environmental Studied, 30, 1-16. https://doi.org/10.15244/pjoes/137372
  • 23. Sitarz-Palczak E., Kalembkiewicz J., Galas D. 2019. Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45, 126-135. https://doi. org/10.24425/aep.2019.126427
  • 24. Toledo M., Siles J.A., Gutierrez M.C., Martin M.A. 2018. Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact. Waste Management, 76, 266-274. https://doi.org/10.1016/j. wasman.2018.03.042
  • 25. Westlake K., Hons B.S., Phil M. 2013. Landfill waste pollution and control. Woodhead Publishing. https://doi.org/10.1016/C2013-0-18014-2
  • 26. Vu T.H., Gowripalan N. 2018. Mechanisms of heavy metal immobilisation using geopolymerisation techniques – a review. Journal of Advanced Concrete Technology, 16, 124-135. https://doi.org/10.3151/ jact.16.124
  • 27. Zehua J., Liya S., Yuansheng P. 2020. Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers. Materials Chemistry and Physics, 242, 1-9. https://doi.org/10.1016/j. matchemphys.2019.122535
  • 28. Zhang X.Y., Chen L., Komarneni S., Zhou C.H., Tong D.S., Yang H.M., Yu W.H., Wang H. 2016. Fly ashbased geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253267. https://doi.org/10.1016/j.jclepro.2016.03.019
  • 29. Zhang J., Provis J.L., Feng D., van Deventer J. 2008. Geopolymers for stabilization of Cr6+, Cd2+ and Pb2+. Journal of Hazardous Materials, 157, 587-598. https://doi.org/10.1016/j.cemconres.2008.01.006
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4acd2da6-d360-4fd8-a83f-dc02f0a054d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.