PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption Kinetics of an Activated Carbon Glass Composite Prepared Using Acrylic Waste Through Laser Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kinetyka adsorpcji kompozytu z węglem aktywnym wytworzonego przy użyciu odpadów akrylowych poprzez obróbkę laserową
Języki publikacji
EN
Abstrakty
EN
This work explains a novel method of producing activated carbon using laser treatment. Acrylic coated glass samples were developed by padding a glass non-woven sheet in 30% acrylic fibre solution (PAN solution) from waste acrylic bathmats. Samples were then dried and cured at different temperatures. After curing, stabilisation was performed at 230 °C with a heating rate of 50 °C hr-1. Infrared laser irradiation was performed on the stabilised web using a commercial pulsed infrared laser for carbonisation. The resultant acrylic glass carbon composite (AGCC) was characterised with the help of x-ray diffraction analysis, energy dispersive w-ray, and a scanning electron microscope to determine the increase in crystallinity as well as the percentage of carbon and surface roughness of the carbon glass composites. The adsorption capacity of the activated carbon (AC) glass composite prepared was determined by changing process inputs like the concentration of dye, the amount of AC glass composite, the agitation speed and pH. The results were analysed through different adsorption isotherms. It was established that the Freundlich model can more effectively describe results due to the development of heterogeneous surface characteristics. The kinetics of adsorption were studied using first order and second order models.
PL
W artykule zaprezentowano nowatorską metodę wytwarzania węgla aktywnego za pomocą obróbki laserowej. Próbki szkła powlekanego akrylem opracowano przez wyściełanie arkusza włókniny szklanej 30% roztworem włókien akrylowych (roztwór PAN) z odpadów akrylowych mat łazienkowych. Próbki następnie suszono i utwardzano w różnych temperaturach. Po utwardzeniu przeprowadzono stabilizację w 230 °C z szybkością ogrzewania 50 °C/godz. Na stabilizowanej wstędze przeprowadzono naświetlanie laserem podczerwonym przy użyciu komercyjnego impulsowego lasera na podczerwień do karbonizacji. Otrzymany kompozyt akrylowo-węglowy (AGCC) scharakteryzowano za pomocą rentgenowskiej analizy dyfrakcyjnej, energii dyspersyjnej w promieniowaniu oraz skaningowego mikroskopu elektronowego w celu określenia przyrostu krystaliczności oraz zawartości procentowej węgla i chropowatości powierzchni. Zdolność adsorpcyjną przygotowanego kompozytu szklanego z węglem aktywnym (AC) określono zmieniając parametry wejściowe procesu, takie jak stężenie barwnika, ilość kompozytu szklanego AC, szybkość mieszania i pH. Wyniki przeanalizowano za pomocą różnych izoterm adsorpcji. Ustalono, że model Freundlich'a skuteczniej opisuje wyniki dzięki rozwojowi niejednorodnych charakterystyk powierzchni. Kinetykę adsorpcji zbadano za pomocą modeli pierwszego i drugiego rzędu.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • National Textile University Faisalabad, Faculty of Engineering and Technology, Pakistan
  • Technical University of Liberec, Faculty of Textile Engineering, Czech Republic
autor
  • Technical University of Liberec, Faculty of Textile Engineering, Czech Republic
  • National Textile University Faisalabad, Faculty of Engineering and Technology, Pakistan
autor
  • National Textile University Faisalabad, Faculty of Engineering and Technology, Pakistan
autor
  • National Textile University Faisalabad, Faculty of Engineering and Technology, Pakistan
  • National Textile University Faisalabad, Faculty of Engineering and Technology, Pakistan
  • Bursa Uludağ University, Vocational School of Technical Sciences, Görükle-Bursa, Turkey
Bibliografia
  • 1. Huang C-H, Chang K-P, Ou H-D, Chiang Y-C, Wang C-F. Adsorption of Cationic Dyes Onto Mesoporous Silica. Microporous and Mesoporous Materials 2011; 141(1-3): 102-109.
  • 2. Qiu M, Huang C. Removal of dyes from aqueous solution by activated carbon from sewage sludge of the municipal wastewater treatment plant. Desalination and Water Treatment 2015; 53(13): 3641-3648.
  • 3. Gupta V. Application of low-cost adsorbents for dye removal – a review. Journal of environmental management, 2009; 90(8): 2313-2342.
  • 4. Ho Y-S, Malarvizhi R, Sulochana N. Equilibrium Isotherm Studies of Methylene Blue Adsorption onto Activated Carbon Prepared from Delonix Regia Pods. Journal of Environmental Protection Science 2009; 3: 111-116.
  • 5. Naeem M S, Javed S, Baheti V, Wiener J, Javed M U, Hassan S Z U, Naeem J. Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste. Fibers and Polymers 2018; 19(1): 71-81.
  • 6. Sharma S, Bhattacharya A. Drinking water contamination and treatment techniques. Applied Water Science 2017; 7(3): 1043-1067.
  • 7. Saini VK, Pires J. Development of Metal Organic Framework-199 Immobilized Zeolite Foam for Adsorption of Common Indoor Vocs. Journal of Environmental Sciences 2017; 55: 321-330.
  • 8. Wang H, Wang B, Li J, Zhu T. Adsorption Equilibrium and Thermodynamics of Acetaldehyde/Acetone on Activated Carbon. Separation and Purification Technology 2019; 209: 535-541.
  • 9. Chen J Y. Activated Carbon Fiber and Textiles: Woodhead Publishing, 2016.
  • 10. Baheti V, Naeem S, Militky J, Okrasa M, Tomkova B. Optimized Preparation of Activated Carbon Nanoparticles from Acrylic Fibrous Wastes. Fibers and Polymers 2015; 16(10): 2193-2201.
  • 11. Bansal R C, Goyal M. Activated carbon adsorption: CRC press, 2005.
  • 12. Naeem S, Baheti V, Tunakova V, Militky J, Karthik D, Tomkova B. Development of Porous and Electrically Conductive Activated Carbon Web for Effective EMI Shielding Applications. Carbon 2017; 111: 439-447.
  • 13. Zaini M A A, Amano Y, Machida M. Adsorption of Heavy Metals onto Activated Carbons Derived from Polyacrylonitrile Fiber. Journal of Hazardous Materials 2010; 180(1-3): 552-560.
  • 14. Arami-Niya A, Daud W M A W, Mjalli F S. Comparative Study of the Textural Characteristics of Oil Palm Shell Activated Carbon Produced by Chemical and Physical Activation for Methane Adsorption. Chemical Engineering Research and Design 2011; 89(6): 657-664.
  • 15. Siqueira G, Abdillahi H, Bras J, Dufresne A. High Reinforcing Capability Cellulose Nanocrystals Extracted from Syngonanthus Nitens (Capim Dourado). Cellulose 2010; 17(2): 289-298.
  • 16. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society 1918; 40(9): 1361-1403.
  • 17. Freundlich H. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie 1907; 57(1): 385-470.
  • 18. Bhat G, Cook F, Abhiraman A, Peebles Jr L. New Aspects in the Stabilization of Acrylic Fibers for Carbon Fibers. Carbon 1990; 28(2-3): 377-385.
  • 19. Yin X-w, Quan L. Effects of Heat Treatment Temperature on Microstructure and Electromagnetic Properties of Ordered Mesoporous Carbon. Transactions of Nonferrous Metals Society of China 2013; 23(6): 1652-1660.
  • 20. Kim J-H, Jeong E, Lee Y-S. Preparation and Characterization of Graphite Foams. Journal of Industrial and Engineering Chemistry 2015; 32: 21-33.
  • 21. Naeem S, Baheti V, Wiener J, Marek J. Removal of Methylene Blue from Aqueous Media Using Activated Carbon Web. The Journal of The Textile Institute 2017; 108(5); 803-811.
  • 22. Chowdhury Z Z, Zain S M, Rashid A, Khalid K. Linear Regression Analysis for Kinetics and Isotherm Studies of Sorption of Manganese (II) Ions onto Activated Palm Ash from Waste Water. Orient. J. Chem 2011; 27(2): 405-415.
  • 23. Crini G, Badot P. Sorption Processes and Pollution: Conventional and Nonconventional Sorbents for pollutant removal from Wastewaters, Presses Univ: Franche-Comté, 2010.
  • 24. Secula MS, Cagnon B, Cretescu I, Diaconu M, Petrescu S. Removal of an Acid Dye from Aqueous Solutions by Adsorption on a Commercial Granular Activated Carbon: Equilibrium, Kinetic and Thermodynamic Study. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry 2011; 12(4): 307.
  • 25. Shah I, Adnan R, Ngah W S W, Mohamed N, Taufiq-Yap Y H. A New Insight to the Physical Interpretation of Activated Carbon and Iron Doped Carbon Material: Sorption Affinity Towards Organic Dye. Bioresource Technology 2014; 160, 52-56.
  • 26. Baccar R, Blánquez P, Bouzid J, Feki M, Sarrà M. Equilibrium, Thermodynamic and Kinetic Studies on Adsorption of Commercial Dye by Activated Carbon Derived From Olive-Waste Cakes. Chemical Engineering Journal 2010; 165(2): 457-464.
  • 27. Demirbas A. Oil from Tea Seed by Supercritical Fluid Extraction. Energy Sources, Part A 2009; 31(3): 217-222.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aca5aa5-616b-46af-af9a-da1fb19a16c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.