PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term subsidence over the Upper Silesia Coal Basin identified on differential LIDAR (2012–2021) and InSAR (2015–2020) data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide a map of subsidence caused by underground mining in Upper Silesia, which hosts the largest coal basin in Poland. The map combines data obtained using two InSAR processing techniques and differential LIDAR data. Persistent Scatterer Interferometry and Differential SAR Interferometry techniques were applied on images from the Sentinel-1 satellite covering a six-year period from 2015 to 2020. As a result, 132 subsidence areas affected by deformation of >5 mm/year covering 430 km² were determined. Additionally, a differential LIDAR model covering the period 2012-2021 was analyzed, where 103 subsidence areas were identified, of a total area of 88 km² and where the largest recorded deformation value exceeded 10 m. Despite the large time difference between the two subsidence datasets, good correlation of the data regarding the location and shape of the troughs was observed. However, comparison of InSAR and LIDAR data showed a large underestimation by DInSAR of values of subsidence in the central parts of the basins. We show the potential of Sentinel-1 and LIDAR data to determine displacements taking place over large areas and over long periods, as a supplement to traditional measurement methods.
Słowa kluczowe
Rocznik
Strony
art. no. 17
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Skrzatów 1, 31-560 Kraków, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Behera, A., Rawat, K.S., 2023. A brief review paper on mining subsidence and its geo-environmental impact. Materials Today: Proceedings, 1; https://doi.org/10.1016/j.matpr.2023.04.183
  • 2. Borecki, M., 1980. Ochrona powierzchni przed szkodami górniczymi (in Polish). Wyd. Śląsk, Katowice.
  • 3. Chećko, J., Głogowska, M., 2010. Evaluation of CO2 storage location brine strata and coal seams in Upper Silesian Coal Basin (GZW) region (in Polish with English summary). Przegląd Górniczy, 66: 97-102.
  • 4. Chen, C.W., Zebker, H.A., 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40: 1709-1719; https://doi.org /10.1109/TGRS.2002.802453
  • 5. Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Crippa, B., 2016. Persistent scatterer interferometry: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 78-89; https://doi.org/10.1016/j.isprsj prs.2015.10.011
  • 6. Czarnogórska, M., 2010. Dynamics of Earth's surface movements in selected regions of the Upper Silesian Coal Basin based on satellite interferometry (in Polish with English summary). Ph.D. Thesis. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa.
  • 7. Declercq, P.Y., Dusar, M., Pirard, E., Verbeurgt, J., Choopani, A., Devleeschouwer, X., 2023. Post mining ground deformations transition related to coal mines closure in the Campine Coal Basin, Belgium, evidenced by three decades of MT-InSAR data. Remote Sensing, 15: 725; https://doi.org/10.3390/rs15030725
  • 8. Del Ventisette, C., Ciampalini, A., Manunta, M., Calo, F., Paglia, L., Ardizzone, F., et al., 2013. Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sensing, 5: 3896-3917; https://doi.org/10.3390/rs5083896
  • 9. Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., Casagli, N., 2021. Review of works combining GNSS and InSAR in Europe. Remote Sensing, 13: 1684; https://doi.org/10.3390/rs13091684
  • 10. Dobak, P., Drągowski, A., Frankowski, Z., Frolik, A., Kaczyński, R., Kotyrba, A., Pinińska, J., Rybicki, S., Woźniak, H., 2009. Zasady dokumentowania warunków geologiczno-inżynierskich dla celów likwidacji kopalń (in Polish). Polish Ministry of Enviroment, Warsaw, 12-14 (84). ISBN 978-83-60117-86-6; https://www.pgi.gov.pl/docman-tree-all/publikacje-2/ksiazki/naukowe-i-metodyczne/252-zasady-dokumentowania-warunkow-geologicznych-dla-celow-likwidacji-kopaln/file.html
  • 11. Dwornik, M., Porzycka-Strzelczyk, S., Strzelczyk, J., Malik, H., Murdzek, R., Franczyk, A., Bała, J., 2021. Automatic detection of subsidence troughs in SAR interferograms using mathematical morphology. Energies, 14: 7785; https://doi.org/10.3390/en14227785
  • 12. Ferretti, A., Prati, C., Rocca, F., 2000. Non linear subsidence rate estimation using Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38: 2202-2212; https://doi.org/10.1109/36.868878
  • 13. Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers InSAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39: 8-20; https://doi.org/10.1109/36.898661
  • 14. Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., Rocca, F., 2007. Submillimeter accuracy of InSAR time series: experimental validation. IEEE Transactions on Geoscience and Remote Sens I ng, 45: 1142-1153; https://doi.org/10.1109/TGRS.2007.894440
  • 15. Froese, C.R., Mei, S., 2008. Mapping and monitoring coal mine subsidence using LiDAR and InSAR. GeoEdmonton, 8: 1127-1133.
  • 16. Graniczny, M., Kowalski, Z., Jureczka, J., Czarnogórska, M., 2005. Terrafirma project-monitoring of subsidence of northeastern part of the Upper Silesian coal basin. Polish Geological Institute Special Papers, 20: 59-63.
  • 17. Graniczny, M., Kowalski, Z., Leśniak, A., Czarnogórska, M., Piątkowska, A., 2007. Analysis of the PSI data from the Upper Silesia - SW Poland. The International Forum on Satelite EO and Geohazards, The International Geohazard Week 5-9 November 2007 ESA-ESRIN Frascati, Rome.
  • 18. Graniczny, M., Kowalski, Z., Przyłucka, M., 2014. Observation of the Mining-Induced Surface Deformations Using C and L SAR Bands: The Upper Silesian Coal Basin (Poland) Case Study. Mathematics of Planet Earth, Springer, Berlin, Heidelberg: 249-255; https://doi.org/10.1007/978-3-642-32408-6_57
  • 19. Graniczny, M., Colombo, D., Kowalski, Z., Przyłucka, M., Zdanowski, A., 2015. New results on ground deformation in the Upper Silesian Coal Basin (southern Poland) obtained during the DORIS Project (EU-FP 7). Pure and Applied Geophysics, 172: 3029-3042; https://doi.org/10.1007/s00024-014-0908-6
  • 20. Hanssen, R., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht, Holland, Kluwer Academic Publishers; https://doi.org/10.1007/0-306-47633-9
  • 21. Herrera, G., Tomás, R., Vicente, F., Lopez-Sanchez, J.M., Mallorquí, J.J., Mulas, J., 2010. Mapping ground movements in open pit mining areas using differential SAR interferometry. International Journal of Rock Mechanics and Mining Sciences, 47: 1114-1125; https://doi.org/10.1016/jJjrmms.2010.07.006
  • 22. Hu ,L., Navarro-Hernández, M., Liu, X., Tomás, R., Tang, X., Bru, G., Ezquerro, P., Zhang, Q., 2022. Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets. Remote Sensing of Environment, 280: 113218; https://doi.org/10.1016Zj.rse.2022.113218
  • 23. Hu, L., Tomás, R., Tang, X., López, V., Herrera, G., Li T., Liu Z., 2023. Updating Active deformation inventory maps in mining areas by integrating InSAR and LiDAR datasets. Remote Sensing, 15: 996; https://doi.org/10.3390/rs15040996
  • 24. Ilieva, M., Polanin, P., Borkowski, A., Gruchlik, P., Smolak, K., Kowalski, A., Rohm, W., 2019. Mining deformation life cycle in the light of InSAR and deformation models. Remote Sensing, 11: 745; https://doi.org/10.3390/rs11070745
  • 25. Klabis, L., Kowalski, A., 2015. Mining exploitation in safety pillar for the city center of Bytom, history and the present (in Polish with English summary). Przegląd Górniczy, 71: 33-43.
  • 26. Konopko, W., 2010. Coal mining and rock mass destruction in the Upper Silesian Coal Basin (in Polish with English summary). Przegląd Górniczy, 66: 1-10.
  • 27. Kowalski, A., 2015. Deformacje powierzchni w Górnośląskim Zagłębiu Węglowym (in Polish). Wydawnictwo Głównego Instytutu Górnictwa, Katowice.
  • 28. Kowalski, A., 2020. Deformacje powierzchni na terenach górniczych kopalni węgla kamiennego (in Polish). GIG, 2020, Katowice. ISBN: 978-83-65-50323-7.
  • 29. Kowalski, A., Gruchlik, P., Polanin, P., Kiełbiowski, K., Rutkowski, T., 2021. Mining extraction in Ruda Śląska -Wirek, deformations and protection of the church building (in Polish with English summary). Przegląd Górniczy, 77: 16-35.
  • 30. Liu, X. 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in physical geography, 32: 31-49; https://doi.org/10.1177/0309133308089496
  • 31. Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its applications to changes in the earth's surface. Reviews of Geophysics, 36: 441-500; https://doi.org/10.1029/97RG03139
  • 32. Modeste, G., Doubre, C., Masson, F., 2021. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. International Journal of Applied Earth Observation and Geoinformation, 102: 102392; https://doi.org/10.1016/jjag.2021.102392
  • 33. Mondini, A.C., Guzzetti, F., Chang, K.T., Monserrat, O., Martha, T.R., Manconi, A., 2021. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216: 103574; https://doi.org/10.1016/j.earscirev.2021.103574
  • 34. Monterroso, F., Bonano, M., Luca, C.D., Lanari, R., Manunta, M., Manzo, M., Onorato, G., Zinno, I., Casu, F., 2020. A global archive of coseismic DInSAR products obtained through unsupervised Sentinel-1 data processing. Remote Sensing, 12: 3189; https://doi.org/10.3390/rs12193189
  • 35. Pawłuszek-Filipiak, K., Borkowski, A., 2020a. Comparison of PSI and DInSAR approach for the subsidence monitoring caused by coal mining exploitation. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43: 333-337; https://doi.org/10.5194/isprs-archives-XUN-B3-2020-333-2020
  • 36. Pawłuszek-Filipiak, K., Borkowski, A., 2020b. Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data: the case study of Rydułtowy mine in Poland. Remote Sensing, 12: 242; https://doi.org/10.3390/rs12020242
  • 37. Perski, Z., 1998. ApplicabilI ty of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal-mining region, Poland. International Archives of Photogrammetry and Remote Sensing, 32: 555-558.
  • 38. Perski, Z., Jura, D., 1999. ERS SAR interferometry for land subsidence detection in coal mining areas. Earth Observation Quarterly, 63: 25-29.
  • 39. Perski, Z., Brzeziński, M., Przyłucka, M., Pacanowski, G., Musiatewicz, M., Nowacki, Ł., Graniczny, M., Kowalski, Z., Chełmiński, J., Czarniak, P., Stępień, U., Czapowski, G., 2019. Monitoring geodynamiczny w zakresie interferometrii satelitarnej pasa wysadów solnych w Polsce oraz próba określenia ruchliwości soli w czwartorzędzie z wykorzystaniem tomografii elektrooporowej i technik modelowania 3D, Raport Końcowy (in Polish). Polish Geological Insitute - NRI, Warsaw 2019. Material effect from the implementation of a task within the scope of the national geological service, agreement no. 913/2014/Wn-07/FG-GO-DN/D from 23.12.2014r.
  • 40. Poland, M.P., Zebker, H.A., 2022. Volcano geodesy using InSAR in 2020: the past and next decades. Bulletin of Volcanology, 84: 27; https://doi.org/10.1007/s00445-022-01531-1
  • 41. Polanin, P., 2017. Monitoring of ground deformation by use aerial laser scanning ilustrated with the example of the city of Bytom (in Polish with English summary). Przegląd Górniczy, 73: 22-30.
  • 42. Przyłucka, M., 2017. Geostatistical analysis of vertical ground displacements identified by satellite interferometry in the Upper Silesian Coal Basin (in Polish with English summary). Przegląd Górniczy, 73: 9-17.
  • 43. Przyłucka, M., Graniczny, M., 2015. Comprehensive use of InSAR and PSInSAR in the study of vertical ground movements in selected regions of the GOP (in Polish with English summary). Przegląd Górniczy, 71: 80-88.
  • 44. Przyłucka, M., Graniczny, M., Herrera, G., 2014. Investigating Strong Mining-Induced Ground Subsidence With X-Band SAR Interferometry In Upper Silesia In Poland. Proceedings 5th EARSeL Workshop on Remote Sensing and Geology Surveying the GEOsphere: 104-109.
  • 45. Przyłucka, M., Herrera, G., Graniczny, M., Col ombo, D., Béjar Pizarro, M., 2015. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sensing, 7: 5300-5328; https://doi.org/10.3390/rs70505300
  • 46. Przyłucka, M., Kowalski, Z., Perski, Z., 2022. Twenty years of coal mining-induced subsidence in the Upper Silesia in Poland identified using InSAR. International Journal of Coal Science & Technology, 9: 1-11; https://doi.org/10.1007/s40789-022-00541-w
  • 47. Ramirez, R.A., Kwon, T.H., 2022. Sentinel-1 persistent scatterer interferometric synthetic aperture radar (PS-InSAR) for long-term remote monitoring of ground subsidence: a case study of a Port in Busan, South Korea. KSCE Journal of Civil Engineering, 26: 4317-4329; https://doi.org/10.1007/s12205-022-1005-5
  • 48. Raspini, F., Caleca, F., Del Soldato, M., Festa, D., Confuorto, P., Bianchini, S., 2022. Review of satellite radar interferometry for subsidence analysis. Earth-Science Reviews, 235: 104239; https://doi.org/10.1016/j.earscirev.2022.104239
  • 49. Solari, L., Del Soldato, M., Raspini, F., Barra, A., Bianchini, S., Confuorto, P., et al., 2020. Review of satellite interferometry for landslide detection in Italy. Remote Sensing, 12: 1351; https://doi.org/10.3390/rs12081351
  • 50. Sopata, P., Stoch, T., Wójcik, A., Mrocheń, D., 2020. Land surface subsidence due to mining-induced tremors in the Upper Silesian Coal Basin (Poland) - case study. Remote Sensing, 12: 3923; https://doi.org/10.3390/rs12233923
  • 51. Strozik, G., 2016. Occurrence and influence assessment of mine rooms and galleries on ground surface (in Polish with English summary). Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach, 8: 151-168.
  • 52. Szuflicki, M., Malon, A., Tymińsk, M., (ed.), 2022. Bilans perspektywicznych zasobów kopalin Polski wg stanu na 31.12. 2021 r. (in Polish). Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa. ISSN 229-4459.
  • 53. Witkowski, W., Mrocheń, D., Sopata, P., Stoch, T., 2021. Integration of the leveling observations and PSInSAR results for monitoring deformations caused by underground mining. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS: 6614-6617; https://doi.org/10.1109/IGARSS47720.2021.9553988
  • 54. Wu, S., Le, Y., Zhang, L., Ding, X., 2020. Multi-temporal InSAR for urban deformation monitoring: progress and challenges. Journal of Radars, 9: 277-294; https://doi.org/10.12000/JR20037
  • 55. Yun, Y., Lü, X., Fu, X., Xue, F., 2020. Application of spaceborne interferometric synihetic aperture radar to geohazard monitoring. Journal of Radars, 9: 73-85; https://doi.org/10.12000/JR20007
  • 56. Zhang, L., Ge, D., Guo, X., Liu, B., Li, M., Wang, Y., 2020. InSAR monitoring surface deformation induced by underground mining using Sentinel-1 images. Proceedings of the International Association of Hydrological Sciences, 382: 237-240; https://doi.org/10.5194/piahs-382-237-2020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ac95e57-0b57-428e-af57-05119e5a7dcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.