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Abstract

In this paper, an efficient mapping of intellectual property (IP) cores onto a scalable
multiprocessor system-on-chip with a k-ary 2-mesh network-on-chip is performed. The
approach is to place more affine IP cores closer to each other reducing the number of
traversed routers. Affinity describes the pairwise relationship between the IP cores quan-
tified by an amount of exchanged communication or administration data. A genetic al-
gorithm (GA) and a mixed-integer linear programming (MILP) solution use the affinity
values in order to optimize the IP core mappings. The GA generates results faster and
with a satisfactory quality relative to MILP. Realistic benchmark results demonstrate that
a tradeoff between administration and communication affinity significantly improves ap-
plication performance.

1 Introduction

Continuous technology scaling is driving an in-
tegration of many intellectual property (IP) blocks
in a single chip allowing future generations of
multiprocessor system-on-chip (MPSoC) to contain
hundreds of heterogeneous processing elements
(PEs) [1]. Network-on-chip (NoC) is a promising
network design approach for scaling from MPSoC
to Many-Core systems because the efficient com-
munication infrastructure supports a large amount
of PEs [2, 3]. As the two dimensional (2D) mesh
scales poorly in NoC, a k-ary 2-mesh topology1

with several IP cores at each router is proposed re-
sulting in better performance while additionally im-
proving area and energy efficiency [4].

The advantage of growing execution paral-
lelism is faced with increasing dynamics and adapt-
ability, e.g., from concurrency and dynamically
changing application and user requirements. One
way to cope with the challenge is to perform tempo-

ral and spacial resource allocation and task synchro-
nization with a dedicated control processor (CP) dy-
namically at runtime. Resulting drawbacks from
combining NoC and CP are potential limitations of
data exchange. Assuming hundreds of cores, a large
hop distance and contention will increase both ad-
ministration and communication latency reducing
application performance. To avoid such drawbacks,
administration and communication should be con-
sidered together in system-level design.

Design space exploration (DSE) allows design-
ers to explore and select designs at system-level.
Given optimization goals and constraints, changing
an application, architecture, and mapping charac-
teristics result most likely in different design points.
In our study, a tradeoff between administration and
communication affinity aims at improved applica-
tion performance through an adequate mapping of
IP cores onto a NoC architecture. The design space
in terms of possible placements is rapidly growing

12D mesh with k2 routers located in k rows and k columns.
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– an agent dealing with decisions related to the
blocked roads problem,

– an agent dealing with default decisions. These
decisions concern default actions, for example
RCR agents may receive instructions to ride
through the city in order to search new incidents.

The decision agents access to a common knowl-
edge base in order to accomplish their tasks.
This knowledge base includes the world model of
RoboCupRescue and the current state of the disas-
ter space, which is updated continuously by all the
RCR agents. In addition, the decision agents have
an intelligent module, which allows them to make
computing operations and to combine certain ac-
tions to make them more suited to the current sit-
uation.

6 Conclusion

This paper aimed at addressing the problem of
the decision support in crisis situations. A layered
multiagent DSS has been presented here, whose
goal is to help decision-makers to evaluate and to
manage crisis situations. The core of the DSS rep-
resents dynamically and in real time the current sit-
uation using factual agents, then characterizes it and
compares it with past known scenarios to provide fi-
nally results to decision-makers.

The factual agents played a fundamental role in
all the process, since it allow the emerge of the note-
worthy occurred facts of the environment. More-
over, they insure the system adaptivity thanks to
their flexible internal structure. The DBscan algo-
rithm is used to characterise the situation and to ex-
tract FAs subsets. Indeed this method is powerful
to form dynamic clusters based-on geometric cri-
teria. This insure the independence of the system
from the treated application. The parameters are
defined based-on typical scenarios, but we contem-
plate using probabilistic methods aiming to change
these parameters during the process.

The next step in this work, is to introduce
the other types of the factual agents related to the
RoboCupRescue and to enrich consequently the
scenario base to deal with all the captured events. It
is also necessary to carry out the approach to other
applications in order to test and to validate the mul-
tiagent core.
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with NoC size. Moreover, several NoC design goals
and constraints further increase design complexity.
This motivates following heuristic solutions, allow-
ing efficiency in finding adequate solutions. Ge-
netic algorithms (GAs) have been proven to achieve
this goal for over a decade. [5].

In this paper, we present an IP core mapping
methodology and tool flow for MPSoCs which are
scalable in terms of number of cores and the k-ary
2-mesh NoC topology. Communication and admin-
istration affinity are extracted from ideal applica-
tion mappings of previously provisioned IP cores.
Then, the approach considers a tradeoff between
administration and communication affinity via lin-
ear weighting. A mixed integer linear programming
(MILP) solution of the IP core mapping problem is
provided as reference. A scalability analysis com-
pares the performance of the proposed GA with the
MILP. Realistic benchmark results demonstrate that
the tradeoff is able to improve both administration
and application performance.

In the remainder of the paper, Section 2 reviews
related work. In Section 3, an overview of the IP
core mapping approach is given. The GA will be
introduced in Section 4. Then, Section 5 explains
the MILP solution. We demonstrate experiments
and results in Section 6. Finally, future work is dis-
cussed in Section 7. Section 8 concludes our work.

2 Related Work

In embedded system design, GAs have been ap-
plied to perform evolutionary computing for solv-
ing the IP core mapping problem. Existing work
limits IP core mapping to k-ary 2-mesh NoC with
one module per router so far. Ascia et al. [6] in-
troduced a GA to perform multi-objective IP core
mapping. Performance and power consumption
have been balanced to obtain the Pareto mappings.
The efficiency, accuracy, and scalability of the GA
were shown for synthetic traffic and real applica-
tions.

Ozturk et al. [7] introduced heterogeneous NoC
design based on a GA. Similar to us, an affinity
matrix is used to describe communication between
IP cores obtained through profiling. The authors
present automatic selection of heterogeneous IP
cores which are mapped afterwards, limiting NoC

area. In addition, linear programming provides a
reference for the GA.

Latif et al. [8] and Wang et al. [9] presented
two GAs which significantly improve power con-
sumption and system performance. In [8], IP cores
with more communication requirements are given
higher priority over less demanding IP cores. Af-
terwards, IP core mapping is performed according
to a priority order. In our work, prioritization is
also achieved by placing more affine cores closer to
each other. In [9], tightly coupled application tasks
will be located closer to each other compared to
more distributed tasks. During the IP core mapping,
power consumption is reduced, minimizing inter-
core communications and considering both band-
width and latency constraints. We also account for
tightly / loosely coupled tasks because they imply
more / less inter-core communication. We account
for bandwidth and latency constraints during appli-
cation mapping.

Our approach mainly differs from the related
work because we separate communication and ad-
ministration for solving the IP mapping problem. In
addition, our study considers the k-ary 2-mesh NoC
topology enabling efficient IP core mapping in fu-
ture Many-Core systems.

3 IP Core Mapping Methodology

Figure 1 depicts an overview of our design
methodology which maps IP cores to a k-ary 2-
mesh NoC. Besides the optimization of an IP core
mapping via a GA and MILP, the methodology re-
quires further methods, such as simulation, esti-
mation, (architecture) refinement, and validation.
First, the IP cores are provisioned, such as via par-
allelism analysis, as introduced in [10]. Given the
numbers and types of IP cores, the applications are
dynamically mapped onto an architecture assum-
ing an ideal point-to-point communication. The ar-
chitecture further contains one or several memory
and administration units. Due to the point-to-point
communication between the IP cores, network de-
lays and contention are avoided in the interconnect.
From the application mapping results, an affinity
value matrix A is extracted representing the pair-
wise relationship between the IP cores. Each el-
ement in A represents the communication and ad-
ministration affinity between two IP cores. In the
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mapping. Performance and power consumption
have been balanced to obtain the Pareto mappings.
The efficiency, accuracy, and scalability of the GA
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matrix is used to describe communication between
IP cores obtained through profiling. The authors
present automatic selection of heterogeneous IP
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reference for the GA.

Latif et al. [8] and Wang et al. [9] presented
two GAs which significantly improve power con-
sumption and system performance. In [8], IP cores
with more communication requirements are given
higher priority over less demanding IP cores. Af-
terwards, IP core mapping is performed according
to a priority order. In our work, prioritization is
also achieved by placing more affine cores closer to
each other. In [9], tightly coupled application tasks
will be located closer to each other compared to
more distributed tasks. During the IP core mapping,
power consumption is reduced, minimizing inter-
core communications and considering both band-
width and latency constraints. We also account for
tightly / loosely coupled tasks because they imply
more / less inter-core communication. We account
for bandwidth and latency constraints during appli-
cation mapping.

Our approach mainly differs from the related
work because we separate communication and ad-
ministration for solving the IP mapping problem. In
addition, our study considers the k-ary 2-mesh NoC
topology enabling efficient IP core mapping in fu-
ture Many-Core systems.

3 IP Core Mapping Methodology

Figure 1 depicts an overview of our design
methodology which maps IP cores to a k-ary 2-
mesh NoC. Besides the optimization of an IP core
mapping via a GA and MILP, the methodology re-
quires further methods, such as simulation, esti-
mation, (architecture) refinement, and validation.
First, the IP cores are provisioned, such as via par-
allelism analysis, as introduced in [10]. Given the
numbers and types of IP cores, the applications are
dynamically mapped onto an architecture assum-
ing an ideal point-to-point communication. The ar-
chitecture further contains one or several memory
and administration units. Due to the point-to-point
communication between the IP cores, network de-
lays and contention are avoided in the interconnect.
From the application mapping results, an affinity
value matrix A is extracted representing the pair-
wise relationship between the IP cores. Each el-
ement in A represents the communication and ad-
ministration affinity between two IP cores. In the
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next step, the optimization of the IP core map-
ping (placement) uses the affinity value matrix A.
A GA-based solver, implemented in C++, and a
MILP-based solver, implemented on a commercial
tool, can be chosen for this task. Both optimization
methods place highly affine cores at the same router
and less affine cores will be located in a larger dis-
tance. Given the optimization results, the architec-
ture is refined into a k-ary 2-mesh NoC. Then, the
dynamic mapping of an application onto the NoC
architecture is simulated. Afterwards, the mapping
results are validated by a metric quantifying the sys-
tem performance.

Figure 1. Overview of the IP core mapping
methodology for a k-ary 2-mesh NoC.

3.1 Application and architecture model

In Figure 2, the architecture model describes a
k-ary 2-mesh NoC with several IP cores per router
resulting in better performance and power con-
sumption compared to regular 2D mesh NoCs [4,
11, 12]. A k-ary 2-mesh NoC means that n routers
are placed in a regular 2D mesh and each router
connects several modules and IP cores, respectively.
These include memory interfaces (Direct Memory

Accesses, DMAs), CP interfaces (CP-IFs), and pro-
cessing elements (PEs), such as general purpose
processor (GPP), digital signal processor (DSP),
application-specific integrated circuits (ASIC), etc.
The set C comprises all IP cores. Moreover, CA , CC ,
and CE define subsets of C . CA contains the CP-
IFs relating to administration and CC includes the
DMAs relating to communication. Moreover, CE
consists of the PEs responsible for code execution.
Concerning administration, a CP is responsible for
dynamic task scheduling and resolving task depen-
dencies at runtime. Several CP-IFs can be placed
in a NoC to efficiently serve the PEs. The CP-IFs
are connected to the CP through a dedicated net-
work. The model also implies an application pro-
cessor with dedicated memory access directly con-
nected to the CP.

In the application model, threads represent ap-
plications which are independent on each other.
Hence, both no data dependency and no control-
flow dependency exist between threads. Each
thread includes communication, administration,
and computation tasks performed by the IP cores.
Communication tasks are represented by data ex-
change between DMA and PE. Administration
tasks, in our case initialization and release tasks,
represent data transfer between CP-IF and PE. The
initialization task models PE initialization before
loading input data to the PE. After initialization and
load task have finished, the PE executes the compu-
tation task. The release task models task synchro-
nization after the computation result has been stored
via DMA.

Figure 2. Architecture model with k-ary 2-mesh
NoC and several IP cores per router.
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3.2 Extracted affinity value matrix

IP core mapping considers affinity between
cores in terms of exchanged communication and ad-
ministration data. This requires application map-
pings created under ideal network conditions, as
shown in Figure 1. The ideal application map-
pings consist of several task mappings. Given either
communication or administration transfer between
core i and core j, the task mappings allow to extract
transfer latency lt(i, j), an amount of exchanged
communication or administration data d(i, j), and
related execution latency le(i) or le( j). Transfer la-
tency lt(i, j) is a time needed to transfer data d(i, j)
from core i to core j over a network. Execution la-
tency le(i) relates to code execution performed by
PE i. The goal is to give faster cores higher pri-
ority over slower cores since they have more im-
pact on the application performance. Therefore,
d(i, j) is weighted with the frequency of the data
transfer, calculated via the ratio of lt(i, j)/le(i) and
lt(i, j)/le( j), respectively. In case of a data ex-
change between two PEs, each PE contributes with
half of its execution latency le. The weighted data
values d′(i, j) are derived for the cores i and j as
follows:

d′(i, j) =




d(i, j) · lt(i, j)
le(i)

i∈CE , j ̸∈CE

d(i, j) · lt(i, j)
le( j) j∈CE , i̸∈CE

d(i, j) · 2 lt(i, j)
le(i)+le( j) i∈CE , j∈CE ,

i ̸= j
0 otherwise.

(1)

In Equation 1, execution latency le relates to core i
or core j which have to be an element of the set
of computation cores CE and a PE type, respec-
tively. Transfers between administration units (CP-
IFs) and communication units (DMAs) are not con-
sidered. Due to several available task mappings be-
tween a core i and a core j, the weighted data values
d′(i, j) are accumulated over all tasks and included
either in an affinity value matrix for communica-
tion AC with cores i ∈ CC ∨ j ∈ CC or for adminis-
tration AA with cores i ∈ CA ∨ j ∈ CA . Both matri-
ces are normalized and weighted to be merged in an
affinity value matrix A. Finally, the matrix is used
as input for an IP core mapping, as illustrated in
Figure 1.

In the following, a simple architecture contain-
ing three IP cores (DSP, CP-IF, DMA) is used to il-

lustrate a tradeoff between communication and ad-
ministration affinity. In the example, communica-
tion affinity is caused by memory data transferred
between DSP and DMA and administration affinity
relates to control data exchanged between DSP and
CP-IF. Furthermore, DSP is responsible for code
execution. The example below illustrates the two
affinity value matrices AC and AA which have been
extracted, normalized, and weighted to build an
affinity value matrix A = ω ·AC +(1−ω) ·AA.

A = 0.6����

ω

·




0 0 0.6
0 0 0
1 0 0




� �� �
communication

+ 0.4����

1−ω

·




0 1 0
0.1 0 0
0 0 0




� �� �
administration

Accounting for execution latency, both matrices are
either a representation of communication or admin-
istration data exchanged between the IP cores. In
addition, weight ω is used to apply prioritization
towards communication or administration affinity.
Hence, the merged affinity value matrix A repre-
sents a tradeoff between communication and ad-
ministration affinity. In the example, communica-
tion has been prioritized.

3.3 Focussed mapping objectives

In dynamically scheduled environments, it is
necessary to initialize and synchronize task exe-
cution at run-time. As mentioned before, this is
done by the CP-IF. Assuming an NoC, an increasing
number of IP cores in future Many-Core systems
will cause a larger average hop distance. Hence,
administration latency between CP-IF and PE in-
creases, reducing application performance. This
makes it necessary to consider administration affin-
ity in IP core mapping. We propose to weight ad-
ministration and communication affinity in a lin-
ear fashion, see example before, to find a reason-
able tradeoff aiming at improved application perfor-
mance. Nevertheless, communication between PE
and DMA represents a major network load which
also needs to be considered for IP core mapping.
In general, highly-affine cores are placed locally at
the router and less-affine cores will be located in
larger distance (#hops). We restrict our research
to these design objectives and a single-objective
function because we experienced that MILP solvers
could only find an optimal solution for a reduced
problem formulation and complexity, respectively.
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Accounting for execution latency, both matrices are
either a representation of communication or admin-
istration data exchanged between the IP cores. In
addition, weight ω is used to apply prioritization
towards communication or administration affinity.
Hence, the merged affinity value matrix A repre-
sents a tradeoff between communication and ad-
ministration affinity. In the example, communica-
tion has been prioritized.

3.3 Focussed mapping objectives

In dynamically scheduled environments, it is
necessary to initialize and synchronize task exe-
cution at run-time. As mentioned before, this is
done by the CP-IF. Assuming an NoC, an increasing
number of IP cores in future Many-Core systems
will cause a larger average hop distance. Hence,
administration latency between CP-IF and PE in-
creases, reducing application performance. This
makes it necessary to consider administration affin-
ity in IP core mapping. We propose to weight ad-
ministration and communication affinity in a lin-
ear fashion, see example before, to find a reason-
able tradeoff aiming at improved application perfor-
mance. Nevertheless, communication between PE
and DMA represents a major network load which
also needs to be considered for IP core mapping.
In general, highly-affine cores are placed locally at
the router and less-affine cores will be located in
larger distance (#hops). We restrict our research
to these design objectives and a single-objective
function because we experienced that MILP solvers
could only find an optimal solution for a reduced
problem formulation and complexity, respectively.
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As our work focuses on a tradeoff analysis, other
optimization goals and constraints are left out for
future work, see Section 7. Moreover, weighting
has been modeled linearly both in the object func-
tion and the calculation of an affinity value ma-
trix. The advantages include computational sim-
plicity, an interpretable model form, and the ability
to derive information of the quality of the fit. An-
other reason is that MILP does not efficiently sup-
port non-linear objective functions. Nevertheless, a
non-linearly weighted affinity matrix is considered
as future work.

3.4 Automated tool flow

Figure 3. Automated tool flow for IP core
mapping in k-ary 2-mesh NoC.

Figure 3 shows an automated tool flow for the
IP core mapping. Given provisioned IP cores,
a cross-bar switch NoC is generated representing
ideal network conditions. Each application and
thread, respectively, includes administration, com-
munication, and computation tasks. The next step
“Application Mapping” relates to scheduling and
binding of tasks to cores performed by a CP dy-
namically at runtime. Application mappings for
the ideal NoC and k-ary 2-mesh NoC will be de-
rived from a DSE framework introduced in [13].
The framework has been extended to include NoC
topology and protocols in the application, architec-
ture, and mapping. Extraction of affinity value ma-
trices was additionally realized. Earliest deadline

first policy is used to schedule each thread and com-
peting threads are prioritized via least laxity policy.
Moreover, a thread will be canceled if a task dead-
line has been missed. Please note that extraction
of affinity values and the IP core mapping are inde-
pendent of the application mapping allowing also
for different scheduling schemes. After applica-
tion mapping to an ideal NoC, affinity value ma-
trices for both communication and administration
are extracted and merged to build a weighted affin-
ity value matrix. Afterwards, the IP core mapping
problem will be solved via GA or MILP. From the
results, a suitable k-ary 2-mesh architecture is de-
rived allowing to map applications onto the NoC.
Furthermore, each architecture can be visualized
using an XML representation and Microsoft Visio
as graphical front end. Referring to Figure 3, the
tool flow supports IP core mapping to be flexibly
usable for an automated DSE approach. It allows
to explore and compare several k-ary 2-mesh archi-
tectures using a weighted affinity matrix as starting
point.

4 Evolutionary Framework

We developed a steady-state GA to evolve over-
lapping populations of individuals over a number of
generations. The IP core mapping problem has been
simply described by one-chromosome individuals.
The chromosome is represented by a 3-dimensional
array of genes. Two dimensions show the x-y posi-
tion of a router. The remaining dimension maps IP
cores to each router. Hence, each gene value repre-
sents an IP core. Following chromosome relates to
the 2-ary 2-mesh NoC in Figure 2.

G =

(
(GPP DSP ) (CP-IF )
(DSP DMA) (DSP ASIC)

)

Chromosome G includes four routers connect-
ing one GPP, three DSPs, and one ASIC in addi-
tion to the DMA and CP-IF. Moreover, a fitness
value represents the quality of each individual de-
termined in the fitness rate (objective) function.
Evolution starts with an initial population generated
from pseudo-random choice. During each genera-
tion, individuals are selected and crossed accord-
ing to the best fitness values. Then, new individ-
uals are mutated by swapping genes according to
a mutation rate. Variation through crossover and
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mutation and subsequent selection allow to gener-
ate an improved offspring. One-point crossover can
cause duplicated or missing IP cores and genes, re-
spectively, resulting in illegal individuals. We intro-
duce reparation after crossover by randomly replac-
ing duplicated genes with missing genes. As shown
in Section 6, this allows for a significantly improved
fitness value compared to Monte Carlo simulation
and a GA without reparation. The latter produces
illegal individuals which have to be discarded dur-
ing an optimization. From 100 IP cores, the repa-
ration increases the simulation time only by around
1 % which is negligible.

In the GA, Algorithm 4 performs reparation
of an illegal individual. The chromosome g con-
tains genes g representing the IP cores placed in a
NoC. Reparation is applied by randomly replacing
duplicate IP cores (line 7) until all IP cores occur
only once in the NoC (line 6: ∃! g in g). Before
each reparation, the duplicate genes are determined
(line 3). In addition, the replacement of a duplicate
IP core (line 7) is randomly initialized to improve
the GA results. Lines 4 and 8 ensure that reparation
proceeds until the individual gets legal.

Table 1 shows the constant terms used in our
work for both the GA and MILP implementation.
Assume that we are given N number of rows and
M number of columns in a k-ary 2-mesh NoC,
where 1 ≤ x ≤ N;1 ≤ y ≤ M. The NoC connects P
IP cores, where 1 ≤ i ≤ P.

The maximum amount of cores at router r
is limited by Pmax with 1 ≤ r ≤ R. Affinity ma-
trix values for core i and core j are expressed by
ai j ∈ R and they build an affinity value matrix
A ∈ RP×P. As mentioned in Section 3, weight ω

with 0 ≤ ω ≤ 1 is used to linearly merge the affinity
value matrices for communication AC and adminis-
tration AA as follows:

A = ω ·AC +(1−ω) ·AA. (2)

Further weighting heuristics analysis are left for fu-
ture research.

Table 1. The constant terms used in our GA/ MILP
implementation. These are either architecture or

application specific.

Constant Definition [t]
N number of rows in 2D mesh[t]
M number of columns in 2D mesh [t]
P total number of IP cores [t]
R total number of routers [t]
Pmax maximum IP cores connected to

router [t]
ai j affinity weight between PE i and

PE j (obtained as explained in Sec-
tion 3) [t]

A affinity matrix [t]
AA administration affinity matrix [t]
AC communication affinity matrix [t]
ω linear weight for affinity matrices

[t]
K factor to prioritize local affinity [t]

The fitness value determines the best individu-
als from the population which are selected to gen-
erate a new population. The fitness rate (objective)
function in Equation 3 maximizes the affinity val-
ues of closely placed IP cores.

P

∑
i=1

P

∑
j=1

bi jai j

︸ ︷︷ ︸
global affinity

+K ·
P

∑
i=1

P

∑
j=1

R

∑
r=1

br
i jai j

︸ ︷︷ ︸
local affinity

→ max (3)

The first term refers to global affinity which has
been limited to neighbors connected to routers with
one-hop distance. We use bi j = 1 to indicate that
core i and j are connected to routers with at least a
distance of one hop. The second term describes lo-
cal affinity of IP cores located at the same router and
(x,y) position, respectively. Hence, br

i j = 1 denotes
that both cores are located at the same router r.
Weighting with factor K > 1 is used to prioritize
local affinity higher than global affinity. More-
over, several distance are not considered keeping

tively, resulting in illegal individuals. We introduce
reparation after crossover by randomly replacing
duplicated genes with missing genes. As shown in
Section 6, this allows for a significantly improved
fitness value compared to Monte Carlo simulation
and a GA without reparation. The latter produces
illegal individuals which have to be discarded dur-
ing an optimization. From 100 IP cores, the repa-
ration increases the simulation time only by around
1 % which is negligible.

In the GA, Algorithm 1 performs reparation of
an illegal individual. The chromosome ggg contains
genes g representing the IP cores placed in a NoC.
Reparation is applied by randomly replacing du-
plicate IP cores (line 7) until all IP cores occur
only once in the NoC (line 6: ∃! g in ggg). Before
each reparation, the duplicate genes are determined
(line 3). In addition, the replacement of a duplicate
IP core (line 7) is randomly initialized to improve
the GA results. Lines 4 and 8 ensure that reparation
proceeds until the individual gets legal.

Algorithm 1 Reparation of an illegal individual
1: Select genome ggg
2: while ggg is illegal do
3: determineDublicateIPCores(ggg)
4: ggg ← legal
5: for each gene g in ggg do
6: if not (∃! g in ggg) then
7: randomlyReplaceIPCore(g)
8: ggg ← illegal
9: exit for

10: end if
11: end for
12: end while

Table 1 shows the constant terms used in our
work for both the GA and MILP implementation.
Assume that we are given N number of rows and M
number of columns in a k-ary 2-mesh NoC, where
1 ≤ x ≤ N;1 ≤ y ≤ M. The NoC connects P IP
cores, where 1 ≤ i ≤ P. The maximum amount of
cores at router r is limited by Pmax with 1 ≤ r ≤ R.
Affinity matrix values for core i and core j are ex-
pressed by ai j ∈ R and they build an affinity value
matrix AAA ∈ R

P×P. As mentioned in Section 3,
weight ω with 0 ≤ ω ≤ 1 is used to linearly merge
the affinity value matrices for communication AAAC

Table 1: The constant terms used in our GA/ MILP
implementation. These are either architecture or
application specific.
Constant Definition
N number of rows in 2D mesh
M number of columns in 2D mesh
P total number of IP cores
R total number of routers
Pmax maximum IP cores connected to

router
ai j affinity weight between PE i and

PE j (obtained as explained in Sec-
tion 3)

AAA affinity matrix
AAAA administration affinity matrix
AAAC communication affinity matrix
ω linear weight for affinity matrices
K factor to prioritize local affinity

and administration AAAA as follows:

AAA = ω ·AAAC +(1−ω) ·AAAA. (2)

Further weighting heuristics analysis are left for fu-
ture research.
The fitness value determines the best individuals

from the population which are selected to generate
a new population. The fitness rate (objective) func-
tion in Equation 3 maximizes the affinity values of
closely placed IP cores.

P

∑
i=1

P

∑
j=1

bi jai j

︸ ︷︷ ︸

global affinity

+K ·
P

∑
i=1

P

∑
j=1

R

∑
r=1

br
i jai j

︸ ︷︷ ︸

local affinity

→ max (3)

The first term refers to global affinity which has
been limited to neighbors connected to routers with
one-hop distance. We use bi j = 1 to indicate that
core i and j are connected to routers with at least a
distance of one hop. The second term describes lo-
cal affinity of IP cores located at the same router
and (x,y) position, respectively. Hence, br

i j = 1
denotes that both cores are located at the same
router r. Weighting with factor K > 1 is used
to prioritize local affinity higher than global affin-
ity. Moreover, several distance are not considered

6
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mutation and subsequent selection allow to gener-
ate an improved offspring. One-point crossover can
cause duplicated or missing IP cores and genes, re-
spectively, resulting in illegal individuals. We intro-
duce reparation after crossover by randomly replac-
ing duplicated genes with missing genes. As shown
in Section 6, this allows for a significantly improved
fitness value compared to Monte Carlo simulation
and a GA without reparation. The latter produces
illegal individuals which have to be discarded dur-
ing an optimization. From 100 IP cores, the repa-
ration increases the simulation time only by around
1 % which is negligible.

In the GA, Algorithm 4 performs reparation
of an illegal individual. The chromosome g con-
tains genes g representing the IP cores placed in a
NoC. Reparation is applied by randomly replacing
duplicate IP cores (line 7) until all IP cores occur
only once in the NoC (line 6: ∃! g in g). Before
each reparation, the duplicate genes are determined
(line 3). In addition, the replacement of a duplicate
IP core (line 7) is randomly initialized to improve
the GA results. Lines 4 and 8 ensure that reparation
proceeds until the individual gets legal.

Table 1 shows the constant terms used in our
work for both the GA and MILP implementation.
Assume that we are given N number of rows and
M number of columns in a k-ary 2-mesh NoC,
where 1 ≤ x ≤ N;1 ≤ y ≤ M. The NoC connects P
IP cores, where 1 ≤ i ≤ P.

The maximum amount of cores at router r
is limited by Pmax with 1 ≤ r ≤ R. Affinity ma-
trix values for core i and core j are expressed by
ai j ∈ R and they build an affinity value matrix
A ∈ RP×P. As mentioned in Section 3, weight ω

with 0 ≤ ω ≤ 1 is used to linearly merge the affinity
value matrices for communication AC and adminis-
tration AA as follows:

A = ω ·AC +(1−ω) ·AA. (2)

Further weighting heuristics analysis are left for fu-
ture research.

Table 1. The constant terms used in our GA/ MILP
implementation. These are either architecture or

application specific.

Constant Definition [t]
N number of rows in 2D mesh[t]
M number of columns in 2D mesh [t]
P total number of IP cores [t]
R total number of routers [t]
Pmax maximum IP cores connected to

router [t]
ai j affinity weight between PE i and

PE j (obtained as explained in Sec-
tion 3) [t]

A affinity matrix [t]
AA administration affinity matrix [t]
AC communication affinity matrix [t]
ω linear weight for affinity matrices

[t]
K factor to prioritize local affinity [t]

The fitness value determines the best individu-
als from the population which are selected to gen-
erate a new population. The fitness rate (objective)
function in Equation 3 maximizes the affinity val-
ues of closely placed IP cores.

P

∑
i=1

P

∑
j=1

bi jai j

︸ ︷︷ ︸
global affinity

+K ·
P

∑
i=1

P

∑
j=1

R

∑
r=1

br
i jai j

︸ ︷︷ ︸
local affinity

→ max (3)

The first term refers to global affinity which has
been limited to neighbors connected to routers with
one-hop distance. We use bi j = 1 to indicate that
core i and j are connected to routers with at least a
distance of one hop. The second term describes lo-
cal affinity of IP cores located at the same router and
(x,y) position, respectively. Hence, br

i j = 1 denotes
that both cores are located at the same router r.
Weighting with factor K > 1 is used to prioritize
local affinity higher than global affinity. More-
over, several distance are not considered keeping
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the complexity of a MILP solution at a reasonable
level.

GaLib [14] has been used for the GA implemen-
tation which overwrites the genetic operators and
the fitness rate function.

So far, two different locations of the routers,
local and global, are distinguished. Nevertheless,
each router accounts for a latency and the effect on
the transfer latency increases with the number of
routers between two IP cores. This leads to an ex-
tension of the objective function by weighting the
affinity value with a distance-dependent factor. The
distance relates to the number of traversed routers.
The new objective function is denoted as follows:

P

∑
i=1

P

∑
j=1

1
dist(i, j)

·bi jai j → max . (4)

The Equation 4 differs from Equation 3 in terms of
the distance function dist(i, j) considering the local
affinity and extending the global affinity. In case
the cores i and j share the same router, the dis-
tance function returns dist(i, j) = 1. Each additional
router increases dist(i, j) by an increment or factor.

4.1 Discussion

GAs are often criticized to rather converge to a
local optimal than to the global optimal. Hence, it
is important to maintain diversity in a population.
In this paper, this is realized by following a random
initalization and reparation. Another problem is a
fitness rate function which is costly in terms of a
large evaluation time. In that case, approximation
methods help to reduce the evaluation complexity.
For example, the pairwise affinity between the IP
cores has been approximated with an affinity ma-
trix. In this work, the solution quality of the devel-
oped GAs is sufficient. Nevertheless, another opti-
mization algorithm may find a faster and/or better
solution compared to a GA, such as simulated an-
nealing, hill climbing, etc. This requires to obtain
average performance metrics. However, it is out of
the scope of this paper.

5 MILP Formulation

In linear programming (LP), a linear objective
function is constrained via linear equalities and in-
equalities. Its feasible region is a convex polyhe-

dron and an LP algorithm finds the smallest (or
largest) value. In case all unknown variables are
required to be integers, the problem is an integer
LP problem. These problems are in many practi-
cal situations (those with bounded variables) non-
polynomial hard. An mixed-integer LP (MILP)
problem includes both unknown real and integers
variables. The following MILP framework will be
used as reference for the previously presented GA
implementation. The problem is formulated in the
LP format to be further solved by CPLEX [15] or
other solvers. For the location of the P IP cores,
we use the location matrix L with its elements lxy.
The location matrix L assigns each IP core a loca-
tion in terms of an XY coordinate. The elements
elements lxy in L are calculated as follows:

l11 = Q+1

lx+1 y = lxy +1

lx y+1 = lxy +Q Q > M.

Q describes the step width in L that can be an ar-
bitrary number with Q > M,N. Given N < 10 rows
and M < 10 columns with Q = 10, L is defined as
follows:

L :=




91 · · · 99
...

. . .
...

11 · · · 19


 N < 10;M < 10;Q = 10.

Two location value lxy are subtracted in order to
determine either a northern, eastern, southern, and
western neighborship. A set M includes the prede-
fined distance metrics.

M := { +Q����
north

, +1����
east

, −Q����
south

, −1����
west

}.

Given the IP core mappings, the neighborship of
cores i and j is determined by comparing their dis-
tance in L with M as shown further below. The dis-
tance is taken from τi j representing the difference
of the lxy values according to the (x,y) position of
cores i and j:

τi j =
M

∑
x=1

N

∑
y=1

lxyb j
xy −

M

∑
x=1

N

∑
y=1

lxybi
xy ∀i, j ∈ P.

P defines the total number of IP cores. In the equa-
tion above, the location of core j at the (x,y) posi-
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tion is given by the binary variable b j
xy, more specif-

ically:

b j
xy :=

{
1 for the jth core placed at (x,y) position
0 otherwise.

An example illustrates the determination of a pair-
wise neighborship assuming the following locality
matrix L with Q = 10:

L :=
(

21 22
11 12

)
.

It is given that a core (bold type number) is
placed at a location corresponding to l11 and an-
other core (underlined type number) corresponds to
l21. According to the set of distance metrics M ,
τ12 = l21 − l11 = 10 determines that the second core
is the northern neighbor of the first core.

In addition, cores i and j can also share the same
router r and (x,y) position, respectively, which is
expressed by the binary variable br

i j:

br
i j :=

{
1 if cores i and j placed at same router r
0 otherwise.

After describing all variables, we continue with
the presentation of our constraints. The first con-
straint considers a unique placement of core j:

M

∑
x=1

N

∑
y=1

b j
xy = 1 ∀ j ∈ P.

In the equation above, core j is limited to one
(x,y) position. The k-ary 2-mesh topology allows
for Pmax IP cores at each router and (x,y) posi-
tion, respectively. Hence, the following equation
restricts the number of IP cores placed at each
(x,y) position to Pmax:

P

∑
j=1

b j
xy ≤ Pmax ∀x ∈ M;∀y ∈ N.

Then, cores i and j are global neighbors if τi j is
element of the distance metric set M :

bi j =

{
1 if τi j ∈ M
0 otherwise.

Assuming Pmax > 1, the following condition
determines whether cores i and j share the same
router r and (x,y) position, respectively:

br
i j =

{
1 if τi j = 0
0 otherwise.

Given the necessary constraints in the MILP
formulation, our objective function corresponds to
the fitness rate function in Section 4 which maxi-
mizes the affinity values of closely placed IP cores.

6 Experimental Evaluation

First, the GA performance is evaluated using
the MILP solution as reference. Processing times
are normalized to a system with an AMD Opteron
running at 2.2 GHz using one core. Second the
reparation performance of the GA is compared with
results from Monte Carlo simulations. Third, real-
istic benchmark results demonstrate the importance
of determining ω to achieve a tradeoff between ad-
ministration and communication affinity. GA pa-
rameters have been optimized based on the pre-
sented experimental setup. More specifically, 60 %
crossover rate, 1 % mutation rate, and population
size of 200 are choosen from these optimization re-
sults. Moreover, the two-distance fitness rate (ob-
jective) function, defined in Equation 3, is used.

6.1 Complexity scaling results for the GA
and MILP implementation

We generated affinity value matrices A with
pseudo-random values. The probability that two
cores are affine in one direction has been set to
20 %. Problem size is scaled by increasing rows
N, columns M, and maximum IP cores connected to
routers Pmax in the NoC. In each experiment, we run
the GA for 10.000 generations and applied 100 re-
runs to account for the non-deterministic nature of
the GA. Then, minimum, maximum, and average
fitness values are extracted from the results. We
set K = 10 to prioritize local affinity. In Figure 4,
the performance behaviors of GA and MILP are de-
picted. For example, the MILP problem for the 2-
ary 2-mesh with three IP cores per router includes
4121 linear constraints, 13 reals, 660 integers, and
2160 binaries. It was solved in around 2.14 hours.
In contrast, GA executes each run with 10.000 gen-
erations in less than 1 second with an average devi-
ation of 10 % related to MILP. Please note that us-
ing less generations implies faster optimization with
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tion is given by the binary variable b j
xy, more specif-

ically:

b j
xy :=

{
1 for the jth core placed at (x,y) position
0 otherwise.

An example illustrates the determination of a pair-
wise neighborship assuming the following locality
matrix L with Q = 10:

L :=
(

21 22
11 12

)
.

It is given that a core (bold type number) is
placed at a location corresponding to l11 and an-
other core (underlined type number) corresponds to
l21. According to the set of distance metrics M ,
τ12 = l21 − l11 = 10 determines that the second core
is the northern neighbor of the first core.

In addition, cores i and j can also share the same
router r and (x,y) position, respectively, which is
expressed by the binary variable br

i j:

br
i j :=

{
1 if cores i and j placed at same router r
0 otherwise.

After describing all variables, we continue with
the presentation of our constraints. The first con-
straint considers a unique placement of core j:

M

∑
x=1

N

∑
y=1

b j
xy = 1 ∀ j ∈ P.

In the equation above, core j is limited to one
(x,y) position. The k-ary 2-mesh topology allows
for Pmax IP cores at each router and (x,y) posi-
tion, respectively. Hence, the following equation
restricts the number of IP cores placed at each
(x,y) position to Pmax:

P

∑
j=1

b j
xy ≤ Pmax ∀x ∈ M;∀y ∈ N.

Then, cores i and j are global neighbors if τi j is
element of the distance metric set M :

bi j =

{
1 if τi j ∈ M
0 otherwise.

Assuming Pmax > 1, the following condition
determines whether cores i and j share the same
router r and (x,y) position, respectively:

br
i j =

{
1 if τi j = 0
0 otherwise.

Given the necessary constraints in the MILP
formulation, our objective function corresponds to
the fitness rate function in Section 4 which maxi-
mizes the affinity values of closely placed IP cores.

6 Experimental Evaluation

First, the GA performance is evaluated using
the MILP solution as reference. Processing times
are normalized to a system with an AMD Opteron
running at 2.2 GHz using one core. Second the
reparation performance of the GA is compared with
results from Monte Carlo simulations. Third, real-
istic benchmark results demonstrate the importance
of determining ω to achieve a tradeoff between ad-
ministration and communication affinity. GA pa-
rameters have been optimized based on the pre-
sented experimental setup. More specifically, 60 %
crossover rate, 1 % mutation rate, and population
size of 200 are choosen from these optimization re-
sults. Moreover, the two-distance fitness rate (ob-
jective) function, defined in Equation 3, is used.

6.1 Complexity scaling results for the GA
and MILP implementation

We generated affinity value matrices A with
pseudo-random values. The probability that two
cores are affine in one direction has been set to
20 %. Problem size is scaled by increasing rows
N, columns M, and maximum IP cores connected to
routers Pmax in the NoC. In each experiment, we run
the GA for 10.000 generations and applied 100 re-
runs to account for the non-deterministic nature of
the GA. Then, minimum, maximum, and average
fitness values are extracted from the results. We
set K = 10 to prioritize local affinity. In Figure 4,
the performance behaviors of GA and MILP are de-
picted. For example, the MILP problem for the 2-
ary 2-mesh with three IP cores per router includes
4121 linear constraints, 13 reals, 660 integers, and
2160 binaries. It was solved in around 2.14 hours.
In contrast, GA executes each run with 10.000 gen-
erations in less than 1 second with an average devi-
ation of 10 % related to MILP. Please note that us-
ing less generations implies faster optimization with
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relatively low degradation of the deviation to MILP.
In case of 48 IP cores, the GA solves the problem
after 10.000 generations in around four seconds.
Solution time for 1.000 generations is less than one
second and the fitness value is 3.2 % smaller com-
pared to the larger generation size. More figures are
out of the scope of the paper.

Referring to Figure 4, a MILP solution was
found for a maximum of 12 cores2. Instead, GA
generates sufficiently high quality solutions in a
fraction of time and the MILP solver can not even
handle relatively small NoCs. The nature of a GA
does not guarantee an optimal solution. For larger
NoCs, the GA shows increasingly varying fitness
values affecting the quality of solution.

In general, the solution time, when GA and
MILP are converged, increases with the problem
complexity. Whereas a larger sparsity of A de-
creases MILP problem complexity after variable
optimization in the solver. For example with 12
and 75 cores, the GA converges after around 100
and 80.000 generations. Instead for 12 cores, the
MILP problem already has thousands of variables
and constraints, meaning a huge number of sub-
problems, solved by the branch & cut algorithm.
Despite solution time also depends on the way how
linear problems are described, it gives a reason why
the MILP is not able to converge even for a smaller
number of cores.

The GA promises to adequately solve larger
problems than considered here. Regarding the qual-
ity of GA solutions, there is no further conclusion
possible due to an absence of optimal MILP solu-
tions for larger NoCs.

6.2 Comparison of GA w/ or w/o repara-
tion and Monte Carlo simulation

In the experiments, the reparation performance
of the GA is compared with Monte Carlo simula-
tion by using the same amount of generated indi-
viduals. An absence of reparation has also been
considered. For the GA, we assume the experimen-
tal setup of the previous section. The only differ-
ence is that the number of generations is set to 1000.
The number of IP cores is increased from 10 to 100.
Hence, the NoC topologies range from 3x3 to 5x5
with 3-4 modules per router (Pmax). The results are

illustrated in Figure 5. Average (objective) fitness
values have been generated by using 100 different
seeds. In the figure, reparation improves the fitness
value by around 40 % compared to the absence of
reparation. Moreover, the reparation outperforms
the Monte Carlo simulation by around 23 %. At
70 IP cores, a performance drop occurs for Monte
Carlo and No Repair GA. The cause is that the NoC
topology changed from 4x4 to 5x5 implying that
30 module interfaces are not used at the routers.
Hence, both techniques can not efficiently solve the
placement problem. Opposed to that, the impact
on the performance of the reparation-based GA is
much less. Moreover, reparation caused an average
increase of 17 % in the solution time. The impact
is decreasing with a larger number of IP cores and
can be neglected for 100 IP cores (≈ 1 % increase).

6.3 Realistic benchmark results for a k-ary
2-mesh NoC topology

The multi-application scenario is derived from
the E3S Benchmark Suite [16] which largely bases
on data from the Embedded Microprocessor Bench-
mark Consortium [17]. It describes periodic task
graphs and we use the auto-industry benchmark
and the telecommunications benchmark due to their
similar communication requirements. 95 concur-
rent threads are periodically executed and the num-
ber of threads is balanced amongst the two bench-
marks. Considering diverse application starts ts,
ts varies in the equally distributed time interval
0 cycles ≤ ts ≤ 10.000 cycles. The provisioned
IP cores include 52 PEs from the PE types with
the shortest task execution time. Together with six
DMAs and six CP-IFs, the IP cores are mapped
to a 5-ary 2-mesh NoC with maximum three IP
cores per router. Unidirectional data exchange be-
tween cores occurs with ≈ 20 % probability. AC

and AA have been increasingly weighted according
to Equation 2 in the interval ω∈ [0,0.01, . . . ,1]. The
non-deterministic nature of the GA requires averag-
ing of results. Hence, 100 samples were recorded
and averaged for each ω. A sample represents one
GA run with 1.000 generations. Configuration and
release tasks transfer 640 bit and 64 bit data. As
mentioned in Section 3.4, application mappings are
derived via simulation and NoC channel width is set
to 64 bit. The k-ary 2-mesh NoC applies determin-

2otherwise aborts due to a 2 GB memory limitation
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Figure 4. Complexity scaling results for MILP and GA.

Figure 5. Comparison of GA w/ or w/o reparation and Monte Carlo simulation.
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Figure 4. Complexity scaling results for MILP and GA.

Figure 5. Comparison of GA w/ or w/o reparation and Monte Carlo simulation.
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Figure 6. Benchmark results - Average application and communication latency for ω ∈ [0,1].

istic XY wormhole routing.

In Figure 6-7, the curves show average results
of communication latency (lC), administration la-
tency (lA), and application latency (lAP) defined
from a request time until an end of data transfer and
execution, respectively. Referring to Figure 6, lC
decreases with increasing ω. This is because ho-
mogeneous placement of the DMAs is approached
with larger ω. Despite homogeneous placement of
the CP-IFs, lA is not minimal for ω = 0, as shown in
Figure 7. This is because network load is dominated
by communication. In the scenario, lA finds its min-
imum for ω = 0.87 with 17.5 % latency reduction
compared to ω= 1 where communication affinity is
dominantly weighted. Hence, lA is significantly re-
duced through the tradeoff between administration
and communication affinity. Referring to Figure 6,
lAP has a minimum for ω = 0.87 with 2.5 % im-
provement compared to ω = 1. The slight lAP re-
duction is due to the 3 % lC increase for ω = 0.87
compared to 17.5 % lA reduction. Since lA accounts
only for around 20 % of the network load, lAP im-
provement will be more significantly having more
and larger administration data exchange. In addi-
tion, other scheduling schemes, e.g., through data
locality-aware scheduling, will increase the impact

of administration due to less communication data
and tasks, respectively. From the results, we con-
clude that linear weighting allows for a tradeoff
between administration and communication affinity
improving application performance.

In the following, the results of the IP core map-
ping methodology are illustrated in terms of the lo-
cation of the IP cores in the 5x5 NoC with maxi-
mum three IP cores at each router. The mapping
corresponds to the best configuration using an affin-
ity weight ω = 0.87. This gives communication
data a higher priority over the administration data.
The result is shown in Figure 8. Therein, the com-
munication and administration units are well dis-
tributed. A small distance from the computation
units to the administration units (CP-IFs) and com-
munication units (DMAs) significantly improves
the system performance. Referring to Figure 8, the
solution is not necessarily an optimal solution due
to the heuristic nature of the GA. This configuration
returns the lowest application latency (1295 cycles)
of the 100 samples with ω = 0.87.



144 F. Guderian, R. Schaffer and G. Fettweis

Figure 7. Benchmark results - Average administration latency for ω ∈ [0,1].

7 Discussion and Future Work

In this paper, network load related to adminis-
tration is limited to dynamic scheduling. Scenarios
including more administration data exchange will
further underline that administration affinity is be-
coming relevant to IP core mapping. Hence, future
work should include additional network load, such
as through monitoring of core temperature and NoC
resources. In addition, management of voltage / fre-
quency scaling increases data exchange related to
administration. In these cases, a tradeoff between
administration and communication affinity aims at a
reduced administration latency to improve reliabil-
ity, network performance, and power consumption.
For example, energy-efficient systems and safety-
critical applications require exchange of monitoring
and control data over a network. Furthermore, ex-
ploitation of data locality relaxes network load re-
lated to communication. Concerning an optimiza-
tion of IP core mapping, extensions should also ad-
dress power, area and reliability goals, and con-
straints. Especially for the GA, it is fairly easy to
integrate new design goals and constraints. In ad-
dition, it is necessary to extend the IP core map-
ping to irregular NoC topologies since a regular

NoC used for heterogeneous cores would probably
lead to inefficient area utilization. A possible solu-
tion requires to find a suitable geometric arrange-
ment first and IP cores are assigned to routers after-
wards. Hence, a new problem description of an IP
core mapping has to be developed. Future work also
includes an automatic DSE approach for a selection
and mapping of IP cores similar to [7].

8 Conclusion

This paper presents IP core mapping for stat-
ically scalable MPSoCs in terms of number of IP
cores and a k-ary 2-mesh NoC. First, affinity value
matrices for communication and administration are
extracted from ideal application mappings. Exe-
cution latency has been considered during extrac-
tion. Then, both matrices are linearly weighted to
be merged into a single affinity value matrix. This
enables a tradeoff between administration and com-
munication affinity aiming at better system perfor-
mance. The affinity value matrix is used as input
for GA-based and MILP-based IP core mapping. A
scalability analysis showed that the GA generates
results faster and with a satisfactory quality relative
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Figure 7. Benchmark results - Average administration latency for ω ∈ [0,1].
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work should include additional network load, such
as through monitoring of core temperature and NoC
resources. In addition, management of voltage / fre-
quency scaling increases data exchange related to
administration. In these cases, a tradeoff between
administration and communication affinity aims at a
reduced administration latency to improve reliabil-
ity, network performance, and power consumption.
For example, energy-efficient systems and safety-
critical applications require exchange of monitoring
and control data over a network. Furthermore, ex-
ploitation of data locality relaxes network load re-
lated to communication. Concerning an optimiza-
tion of IP core mapping, extensions should also ad-
dress power, area and reliability goals, and con-
straints. Especially for the GA, it is fairly easy to
integrate new design goals and constraints. In ad-
dition, it is necessary to extend the IP core map-
ping to irregular NoC topologies since a regular

NoC used for heterogeneous cores would probably
lead to inefficient area utilization. A possible solu-
tion requires to find a suitable geometric arrange-
ment first and IP cores are assigned to routers after-
wards. Hence, a new problem description of an IP
core mapping has to be developed. Future work also
includes an automatic DSE approach for a selection
and mapping of IP cores similar to [7].

8 Conclusion

This paper presents IP core mapping for stat-
ically scalable MPSoCs in terms of number of IP
cores and a k-ary 2-mesh NoC. First, affinity value
matrices for communication and administration are
extracted from ideal application mappings. Exe-
cution latency has been considered during extrac-
tion. Then, both matrices are linearly weighted to
be merged into a single affinity value matrix. This
enables a tradeoff between administration and com-
munication affinity aiming at better system perfor-
mance. The affinity value matrix is used as input
for GA-based and MILP-based IP core mapping. A
scalability analysis showed that the GA generates
results faster and with a satisfactory quality relative

ADMINISTRATION AND COMMUNICATION AWARE IP . . .

Figure 8. Best result configuration of the “IP core mapping” methodology



146 F. Guderian, R. Schaffer and G. Fettweis

to the found MILP solutions. Moreover, the GA
enables to find adequate solutions for more com-
plex problems. Experiments with realistic bench-
marks showed that a tradeoff between communi-
cation and administration affinity significantly re-
duces administration latency improving application
performance. As network size and system adapt-
ability increase, the growing influence of adminis-
tration becomes more evident.
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