PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effects of electromagnetic fields and their shielding on the growth of dwarf runner beans

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of electromagnetic fields and their shielding on the growth of dwarf runner bean Phaseolus coccineus L. Three sectors were separated on the device emitting electromagnetic fields: “E” - sector emitting electromagnetic radiation with the predominance of the electrical component, “EM” - sector emitting electromagnetic radiation without domination of its components and “M” - sector with a predominance of magnetic component. Fields generated by the device were also shielded with ADR TEX, a screen based on a nanocomposite in which the electric component of the electromagnetic radiation is absorbed by water dispersed within a dielectric matrix in various ways. The composites exhibit high dielectric absorption and shield electric fields within the frequency range from ~100 mHz to ~100 kHz. Electromagnetic fields with the predominance of the electrical component and without domination of its components delayed the initial emergence of runner bean seedlings. Shielding of electromagnetic field without domination of its components with ADR TEX screen protected against this negative impact on the emergence rate of young runner bean seedlings. Exposure of plants to differentiated electromagnetic fields adversely affected their growth. Plants exposed to electromagnetic radiation without domination of its components had the lowest height and the shortest internodes. Shielding of electromagnetic fields with ADR TEX screen efficiently protected against their negative impact on the plant growth. Electromagnetic fields and their shielding did not influence the size of leaves and the index leaf greenness (SPAD).
Rocznik
Strony
457--471
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., tab.
Twórcy
  • Department of Entomology and Environmental Protection, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 336
autor
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 384
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 384
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 384
  • ADR Technology, ul. W. Żeleńskiego 18, 80-285 Gdańsk, Poland, email: s.wosinski@adrtechnology.eu
Bibliografia
  • [1] Lewczuk B, Redlarski G, Żak A, Ziółkowska N, Przybylska-Gornowicz B, Krawczuk M. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. Bio Med Res Int. 2014;169459. DOI: 10.1155/2014/169459.
  • [2] Gemici M, Demiray H, Gemici Y. Effects of electromagnetic fields produced by high voltage transmission on physiology of Juglans regia L. and Cerasus avium L. Moensch Ege Üniv Ziraat Fak Derg. 2013;50(2):129-35. Available from: https://dergipark.org.tr/download/article-file/59435.
  • [3] Biketi S, Kirui MSK, Mwonga S, Ngumbu R., Rono J. Effect of 50 Hz magnetic field on the chlorophyll content of Spinacia oleracea. 11th JKUAT Scientific, Technol Industrialization Conf. 2016;52. Available from: http://journals.jkuat.ac.ke/index.php/jscp/article/view/1328/1094.
  • [4] Racuciu M, Creanga DE. Biological effects of low frequency electromagnetic field in Cucurbita pepo. Proc Third Moscow Int Symp Magnetism. 26-30 June 2005, Moscow, Russia. 2005;278-82. Available from: http://magn.ru/proc/pdf/278.pdf.
  • [5] Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng Life Sci. 2019;19:986-99. DOI: 10.1002/elsc.201900039.
  • [6] Nurbaity A, Nuraini A, Agustine E, Solihin MA, Setiawan A, Mbusango A. Enhanced seedling germination and growth of sorghum through pre-sowing seed magnetic field treatment. Int Seminar Congress Indonesian Soil Sci Soc. 2019. IOP Conf Series: Earth Environ Sci. 2019:393;012101. DOI: 10.1088/1755-1315/393/1/012101.
  • [7] Sudsiri ChJ, Jumpa N, Kongchana P, Ritchie RJ. Stimulation of oil palm (Elaeis guineensis) seed germination by exposure to electromagnetic fields. Sci Hortic. 2017:220:66-77. DOI: 10.1016/j.scienta.2017.03.036.
  • [8] Shrabangi A, Sheidai M, Majd A, NabIuni M, Dorranian D. Cytogenetic abnormalities caused by extremely low electromagnetic fields in canola. Sci Asia. 2010;36:292-6. DOI: 10.2306/scienceasia1513-1874.2010.36.292.
  • [9] Dannehl D. Effects of electricity on plant responses. Sci Hortic. 2018;234:382-92. DOI: 10.1016/j.scienta.2018.02.007.
  • [10] Moon JD, Chung HS. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrostat. 2000;48:103-14. DOI: 10.1016/S0304-3886(99)00054-6.
  • [11] Molamofrad F, Lotfi M, Khazaei J, Tavakkol-Afshari R, Shaiegani-Akmal AA. The effect of electric field on seed germination and growth parameters of onion seeds (Allium cepa). Adv Crop Sci. 2013;3(4):291-8. Available from: https://www.researchgate.net/publication/236856128_The_effect_of_electric_field_on_seed_germination_and_growth_parameters_of_onion_seeds_Allium_cepa.
  • [12] Janositz A, Knorr D. Microscopic visualization of pulsed electric field induced changes on plant cellular level. Innov Food Sci Emerg Technol. 2010;11(4):592-7. DOI: 10.1016/j.ifset.2010.07.004.
  • [13] Górski R, Kotwicka M, Skibińska I, Jendraszak M, Wosiński S. Effect of low-frequency electric field screening on motility of human sperm. Ann Agric Environ Med. 2020;27(3):427-34. DOI: 10.26444/aaem/116019.
  • [14] Górski R, Nowak-Terpiłowska A, Śledziński P, Baranowski M, Wosiński S. Morphological and cytophysiological changes in selected lines of normal and cancer human cells under the influence of a radio-frequency electromagnetic field. Ann Agric Environ Med. 2019. DOI: 10.26444/aaem/118260.
  • [15] Milham S. Historical evidence that electrification caused the 20th century epidemic of “diseases of civilization”. Medical Hypotheses. 2010;74(2):337-45. DOI: 10.1016/j.mehy.2009.08.032.
  • [16] IARC (International Agency for Research on Cancer). Non-Ionizing Radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 2002, volume 80. Lyon: IARC Press; 1-445. ISBN: 9789283215806. Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Non-ionizing-Radiation-Part-1-Static-And-Extremely-Low-frequency-ELF-Electric-And-Magnetic-Fields-2002.
  • [17] C95.1-2019/Cor 1-2019 - IEEE approved draft standard for safety levels with respect to human exposure to electric, magnetic and electromagnetic fields, 0 Hz to 300 GHz - Corrigendum 1. IEEE Standards Association; 2019. Available from: https://standards.ieee.org/standard/C95_1-2019.html.
  • [18] Wosiński S. Solution for impregnation of materials shielding low-frequency electric field and the shielding material. PAT.221223 Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010093270&tab=PCTBIBLIO.
  • [19] Wosiński S. A composition for impregnating materials to shield against the effects of alternating electromagnetic fields, its application in coating/impregnating fibrous and/or porous matrices and materials containing the same. Patent application 20170349765; 2017. Available from: https://patents.justia.com/patent/20170349765.
  • [20] Lancashire PD, Bleiholder H, Langeluddecke P, Stauss R, van den Boom T, Weber E, et al. A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol. 1991;119(3):561-601. DOI: 10.1111/j.1744-7348.1991.tb04895.x.
  • [21] Rodriguez IR, Miller GR. Using a chlorophyll meter to determine the chlorophyll concentration, nitrogen concentration, and visual quality of St. Augustine grass. HortSci. 2000;35:751-4. DOI: 10.21273/HORTSCI.35.4.751.
  • [22] Das R, Bhattacharya R. Impact of electromagnetic field on seed germination. Proc XXVIIIth URSI General Assembly, New Delhi, India, October 2005, ISBN: 8177649280, Paper KP.14(0983). Available from: www.ursi.org/proceedings/procGA05/pdf/KP.14(0983).pdf.
  • [23] Rajendra P, Sujatha Nayak H, Sashidhar RB, Subramanyam C, Devendranath D, Gunasekaran B, et al. Effects of power frequency electromagnetic fields on growth of germianting Vicia faba L., the broad bean. Electromagn Biol Med. 2005;24:39-54. DOI: 10.1081/JBC-200055058.
  • [24] Rochalska M, Orzeszko-Rywka A. Magnetic field treatment improves seed performance. Seed Sci Technol. 2005;33:669-74. DOI: 10.15258/sst.2005.33.3.14.
  • [25] Fischer G, Tausz M, Köck M, Grill D. Effects of weak 16 2/3 magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics. 2004;25(8):638-41. DOI: 10.1002/bem.20058.
  • [26] Radhakrishnan R, Kumari BDR. Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol Biochem. 2012;51:139-44. DOI: 10.1016/j.plaphy.2011.10.017.
  • [27] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. minor). J Pant Growth Regul. 2019;38:1153-60. DOI: 10.1007/s00344-019-09920-1.
  • [28] Yadav YM, Mahadik SG, Dalvi VV, Deogirikar AA, Burondkar MM, Vanave PB. Effect of magnetic treatment on enzyme activation of paddy (Oryza sativa L.). Int J Curr Microbiol App Sci. 2018;7(10):3573-81. DOI: 10.20546/ijcmas.2018.710.414.
  • [29] Cakmak T, Dumlupinar R, Erdal S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 2009;31(2):120-9. DOI: 10.1002/bem.20537.
  • [30] De Souza A, Sueiro L, García D, Porras E. Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Sci Technol. 2010;38:61-72. DOI: 10.15258/sst.2010.38.1.06.
  • [31] Carbonell MV, Flórez M, Martínez E, Maqueda R, Amaya JM. Study of stationary magnetic fields on initial growth of pea (Pisum sativum L.) seeds. Seed Sci Technol. 2011;39(3):673-9. DOI: 10.15258/sst.201139.3.15.
  • [32] Mroczek-Zdyrska M, Tryniecki Ł, Kornarzyński K, Pietruszewski S, Gagoś M. Influence of magnetic field stimulation on the growth and biochemical parameters in Phaseolus vulgaris L. J Microbiol Biotech Food Sci. 2016;5(6):548-51. DOI: 10.15414/jmbfs.2016.5.6.548-551.
  • [33] Serdyukov YA, Novitskii YI. Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings. Russ. J Plant Physiol. 2013;60(1):69-76. DOI: 10.1134/S1021443713010068.
  • [34] Soja G, Kunsch B, Gerzabek M, Reichenauer T, Soja AM, Rippar G, et al. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line. Bioelectromagnetics. 2003;24(2):91-102. DOI: 10.1002/bem;.10069.
  • [35] Levina NS, Tertyshnaya YV, Bidey IA, Elizarova OV, Shibryaeva LS. Presowing treatment of seeds of spring wheat with low-frequency electromagnetic field. Agricult Biol. 2017;52(3):580-7. DOI: 10.15389/agrobiology.2017.3.580eng.
  • [36] Nader A, Touraj MM, Nader J. Effects of electromagnetic field and ultrasonic waves on seed germination, seedling characteristics and essence percent of thymes (Thymus vulgaris L.). J Crop Ecophysiol (Agricult Sci). 2019;13(1):57-72. Available from: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=724037.
  • [37] Jedlička J, Paulen O, Ailer Š. Research of effect of low frequency magnetic field on germination, growth and fruiting of field tomatoes. Acta Horticulturae et Regiotecturae. 2015;1:1-4. DOI: 10.1515/ahr-2015-0001.
  • [38] Schmiedchen K, Petri AK, Driessen S, Bailey WH. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environ Res. 2018;160:60-76. DOI: 10.1016/j.envres.2017.09.013.
  • [39] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17(1):53-61. Available from: https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ac13c69-6529-4702-9dd3-944e41157105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.