PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Consistency analysis of degradation mechanism in step-stress acc elerated degradation testing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza niezmienności mechanizmu degradacji w przyspieszonych badaniach degradacji z obciążeniem stopniowym
Języki publikacji
EN
Abstrakty
EN
Step-stress accelerated degradation testing (SSADT) has been used by many researchers for the reliability assessment of highly reliable products. Most of the previous works on SSADT assume that the degradation mechanism keeps unchanged during the accelerated degradation testing. However, some recent investigations have shown that degradation mechanisms may be different among various accelerated stress levels. For an accurate extrapolation of accelerated testing results to the ambient condition, the degradation mechanism at all accelerated stress levels should be the same. Taking the variation of the degradation mechanism into account, it is advisable to test the degradation mechanism consistency in a SSADT. This paper proposes a likelihood ratio test method for the consistency analysis of degradation mechanism in the SSADT. We first introduce the basic principle of the likelihood ratio test method. Then we describe the model for SSADT data and the parameter estimation method. Further, we propose a decision rule for the consistency analysis. The proposed method is illustrated and validated with examples on the consistency analysis of degradation mechanism in a SSADT of silicone rubbers.
PL
Wielu badaczy wykorzystuje przyspieszone badania degradacji z obciążeniem stopniowym (ang. step-stress accelerated degradation testing, SSADT) do oceny niezawodności wysoce niezawodnych produktów. Większość wcześniejszych prac nad SSADT zakłada, że podczas badań przyspieszonych mechanizm degradacji pozostaje niezmienny. Jednak, najnowsze badania wykazały, że mechanizmy degradacji mogą różnić się w zależności od poziomu przyspieszonego obciążenia. Poprawna ekstrapolacja wyników badań przyspieszonych na warunki otoczenia wymaga aby mechanizm degradacji przy wszystkich poziomach obciążenia był taki sam. Biorąc pod uwagę zmienność mechanizmu degradacji, wskazane jest badanie stopnia (nie)zmienności mechanizmu degradacji w badaniach SSADT. W artykule zaproponowano metodę analizy niezmienności mechanizmu degradacji w badaniach SSADT opartą na teście ilorazu wiarygodności. W pierwszej kolejności, przedstawiono podstawową zasadę testu ilorazu wiarygodności. Następnie, opisano model dla danych SSADT i metodę estymacji parametrów. Ponadto zaproponowano regułę decyzyjną stanowiąca narzędzie do analizy niezmienności. Omawianą metodę zilustrowano i zweryfikowano na przykładzie analizy niezmienności mechanizmu degradacji w badaniach SSADT gumy silikonowej.
Rocznik
Strony
302--309
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Laboratory of Science and Technology on Integrated Logistics Support College of Mechatronics and Automation National University of Defense Technology Yanwachi str., 47 Changsha, 410073, China
autor
  • Laboratory of Science and Technology on Integrated Logistics Support College of Mechatronics and Automation National University of Defense Technology Yanwachi str., 47 Changsha, 410073, China
  • chenxun@nudt.edu.cn
autor
  • Laboratory of Science and Technology on Integrated Logistics Support College of Mechatronics and Automation National University of Defense Technology Yanwachi str., 47 Changsha, 410073, China
autor
  • Laboratory of Science and Technology on Integrated Logistics Support College of Mechatronics and Automation National University of Defense Technology Yanwachi str., 47 Changsha, 410073, China
Bibliografia
  • 1. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19(6): 716-723, http://dx.doi.org/10.1109/TAC.1974.1100705.
  • 2. Bae SJ, Kvam PH. A change-point analysis for modeling incomplete burn-in for light displays. IIE Transactions 2006; 38(6): 489-498, http://dx.doi.org/10.1080/074081791009068.
  • 3. Bernstein R, Gillen KT. Predicting the lifetime of fluorosilicone o-rings. Polymer Degradation and Stability 2009; 94: 2107-2113, http://dx.doi.org/10.1016/j.polymdegradstab.2009.10.005.
  • 4. Cai M, Yang DG, Tian KM, Zhang P, Chen XP, Liu LL, Zhang GQ. Step-stress accelerated testing of high power LED lamps based on subsystem isolation method. Microelectronics Reliability 2015; 55: 1784-1789, http://dx.doi.org/10.1016/j.microrel.2015.06.147.
  • 5. Cary MB, Koenig RH. Reliability assessment based on accelerated degradation: a case study. IEEE Transactions on Reliability 1991; 40(5): 499-506, http://dx.doi.org/10.1109/24.106763.
  • 6. Celina M, Gillen KT, Assink RA. Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes. Polymer Degradation and Stability 2005; 90: 395-404, http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.004.
  • 7. Gillen KT, Bernstein R, Derzon DK. Evidence of non-Arrhenius behaviour from laboratory aging and 24-year field aging of polychloroprene rubber materials. Polymer Degradation and Stability 2005; 87: 57-67, http://dx.doi.org/10.1016/j.polymdegradstab.2004.06.010.
  • 8. Gillen KT, Celina M, Bernstein R. Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress-relaxation and oxygen consumption techniques. Polymer Degradation and Stability 2003; 82: 25-35, http://dx.doi.org/10.1016/S0141-3910(03)00159-9.
  • 9. Guo CS, Wang N, Ma WD, Zhang YF, Cong X, Feng SW. Rapid identification of the consistency of failure mechanism for constant temperature stress accelerated testing. Acta Physica Sinica 2013; 62(6): 0685021-5, http://dx.doi.org/10.1109/10.7498/aps.62.068502.
  • 10. Guo CS, Zhang YF, Wang N, Zhu H, Feng SW. Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions. Journal of Semiconductors 2014; 35(8): 0840101-5, http://dx.doi.org/10.1088/1674-4926/35/8/084010.
  • 11. Hirose H. Estimation of threshold stress in accelerated life-testing. IEEE Transactions on Reliability 1993; 42(4): 650-657, http://dx.doi.org/10.1109/24.273601.
  • 12. HGT 3087. Method of accelerated determination for shelf-life of rubber static sealing parts, China, 2001.
  • 13. Hu JM, Barker D, Dasgupta A, Arora A. Role of failure-mechanism identification in accelerated testing. Proceedings of Annual Reliability and Maintainability Symposium, 1992; 1: 181-188, http://dx.doi.org/10.1109/ARMS.1992.187820.
  • 14. Le Sauxa V, Le Gac PY, Marcoa Y, Calloch S. Limits in the validity of Arrhenius predictions for field ageing of a silica filled polychloroprene in a marine environment. Polymer Degradation and Stability 2014; 99: 254-261, http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.027.
  • 15. Liao CM, Tseng ST. Optimal design for step-stress accelerated degradation tests. IEEE Transactions on Reliability 2006; 55(1): 59-66, http://dx.doi.org/10.1109/TR.2005.863811.
  • 16. Martin JW, Ryntz RA, Chin J, Dickie RA. Service life prediction of polymeric materials. New York: Springer, 2009.
  • 17. McPherson JW. Reliability physics and engineering. New York: Springer, 2010.
  • 18. Meeker W, Escobar L. Statistical methods for reliability data. New York: John Wiley & Sons, 1998.
  • 19. Nelson W. Accelerated testing: statistical models, test plans, and data analysis. New York: John Wiley & Sons, 1990, https://doi.org/10.1002/9780470316795.
  • 20. Patel M, Skinner AR. Thermal ageing studies on room-temperature vulcanised polysiloxane rubbers. Polymer Degradation and Stability 2001; 73: 399-402, http://dx.doi.org/10.1016/S0141-3910(01)00118-5.
  • 21. Tan CM, Singh P. Time evolution degradation physics in high power white LEDs under high temperature-humidity conditions. IEEE Transactions on Device and Materials Reliability 2014; 14(2): 742-750, http://dx.doi.org/10.1109/TDMR.2014.2318725.
  • 22. Tang LC, Chang DS. Reliability prediction using nondestructive accelerated-degradation data: case study on power supplies. IEEE Transactions on Reliability 1995; 44(4): 562-566, http://dx.doi.org/10.1109/24.475974.
  • 23. Tseng ST, Balakrishnan N, Tsai CC. Optimal step-stress accelerated degradation test plan for Gamma degradation processes. IEEE Transactions on Reliability 2009; 58(4): 611-618, https://doi.org/10.1109/TR.2009.2033734.
  • 24. Tseng ST, Wen ZC. Step-stress accelerated degradation analysis for highly reliable products. Journal of Quality Technology 2000; 32(3): 209-216.
  • 25. Wang YS, Fang X, Zhang CH, Chen X, Lu JZ. Lifetime prediction of self-lubricating spherical plain bearings based on physics-of-failure model and accelerated degradation test. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(4): 528-538, https://doi.org/10.17531/ein.2016.4.7.
  • 26. Wang YS, Zhang CH, Zhang SF, Chen X, Tan YY. Optimal design of constant stress accelerated degradation test plan with multiple stresses and multiple degradation measures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2015; 229(1):83-93, http://dx.doi.org/10.1177/1748006X14552312.
  • 27. Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics 1938; 9: 60-62, http://dx.doi.org/10.1214/aoms/1177732360.
  • 28. Yang G. Reliability demonstration through degradation bogey testing. IEEE Transactions on Reliability 2009; 58(4): 604-610, http://dx.doi.org/10.1109/TR.2009.2033733.
  • 29. Yu HF, Tseng ST. Designing a degradation experiment. Naval Research Logistics 1999; 46: 689-706, http://dx.doi.org/10.1002/(SICI)1520-6750(199909)46:6<689::AID-NAV6>3.0.CO;2-N.
  • 30. Zhao WB, Elsayed EA. A general accelerated life model for step-stress testing. IIE Transactions 2005; 37(11): 1059-1069, http://dx.doi.org/10.1080/07408170500232396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4abf1cd4-682c-4ddc-b7b9-881d63bd5b91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.