PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Recoil Energy of Water-Jet Disruptor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is used as a liquid projectile in a disruptor for destruction of various dangerous objects such as improvised explosive devices (IED’s). This weapon is light weight and experiences certain recoil during a firing action. As there is motion between a projectile and a barrel, a recoil is experienced by the weapon. The recoil of weapon works on a conservation of momentum equation which is based on Newton’s second law of motion. A water-jet is created due to intense gas generation by a propellant burning inside the cartridge. The gas energy obtained by burning the propellant is responsible for pushing the projectile in a forward direction through the barrel. Due to gas generation by propellant burning, there is forward motion of the projectile. An attempt is made to determine the theoretical recoil velocity, its energy for the projectile in a water-jet application. The minimum and maximum recoil velocities of a water-jet varies from 2.311 m/s to 2.611 m/s. The order of magnitude for the recoil velocities is small and can be compared with a recoil of small calibre weapons that these weapons experienced during a firing mode. Based on recoil velocities, minimum and maximum kinetic energies of recoil parts are determined as 3.73 kJ and 4.77 kJ, respectively. The maximum gas force experienced by the projectile is worked out as 13.46 kN. The minimum and maximum energies to overcome the resistance force are determined as 14.657 J and 18.711 J, respectively. A small exercise for spring design is also covered.
Twórcy
  • Armament Research & Development Establishment (ARDE), Pune – 411 021, India
  • Armament Research & Development Establishment (ARDE), Pune – 411 021, India
  • High Energy Material Research Laboratory (HEMRL), Pune – 411 021, India
Bibliografia
  • [1] Lin T.Y., H.C. Ping, T.Y. Yang, C.T. Chan, C.C. Yang. Dynamic simulation of the recoil mechanism on artillery weapons. In Proceedings of International Conference on Computer Engineering and Systems ICCES 11 (4) : 115-121.
  • [2] Textbook of Ballistics and Gunnery (Ed.: L. W. Longdon). 1984. London: Her Majesty’s Stationery Office.
  • [3] Corner John. 1950. Theory of the Interior Ballistics of Gun. New York: John Wiley & Sons.
  • [4] Radomski Marek. 2014. “Stability Conditions and Interior Ballistics of Recoilless Projected Water Disruptor”, Journal of Propellant, Explosives and Pyrotechnics 39 (6) : 916-921, DOI: 10.1002/prep.201400159.
  • [5] Surma Zbigniew. 2018. “Recoil gun system as a particular form general interior ballistic model of gun propellant system”, Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa - Problems of Mechatronics. Armament, Aviation, Safety Engineering 9 (34) : 33-48, DOI:10.5604/01.3001.0012.7331.
  • [6] Barnett M. Stephen. 2010. “On the recoil and Doppler shifts”, Journal of Modern Optics 57 (14-15) : 1445 - 1447, DOI:10.1080/09500341003605437.
  • [7] Russell Kevin. 2014. “Recent Advances in Small Arms Recoil Reduction”, Recent Patents on Mechanical Engineering 7 (3) : 241-246 DOI:10.2174/2212797607666141023001527.
  • [8] Hajihosseinloo M.A., C.J. Hooke, D. Walton. 1989. “Gun recoil system performance measurement - and prediction”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 203 (2) : 85-92.
  • [9] Schmidt M. Edward. 2001. “Comparison of the recoil of conventional and electromagnetic cannon”. Shock and Vibration 8 (4): 141-145.
  • [10] Fedaravičius Algimantas, Minvydas Ragulskis, Egidijus Sližys. 2005. “Dynamic synthesis of the recoil imitation system of weapons”, Mechanika 1 (55) : 44-45.
  • [11] Lukáč Tomáš, Roman Vítek, Linh Do Duc, Vladimír Horak. 2016. Experimental mechanical device for recoil simulation. In Proceedings of the Scientific research and education in the air force – AFASES 2016 pp. 337-346. DOI: 10.19062/2247-3173.2016.18.1.46.
  • [12] Szmit Łukasz, Ryszard Wożniak. 2012. “Specificity of design and action of the weapon’s jump and recoil laboratory test stand”. Science and Military 1 : 16-22.
  • [13] Weldon W.F., M.D. Driga, H.H. Woodson. 1986. “Recoil in electromagnetic railguns”. IEEE Transaction on Magnetic 22 (6): 1808-1811.
  • [14] Joint Services Specification on Double Base Propellants. 2003. JSS: 1376-12. New Delhi, India: Directorate of Standardisation.
  • [15] Parate Ambadas Bhupesh, Sunil Chandel, Himanshu Shekhar. 2019. “Design Analysis of Closed Vessel for Power Cartridge Testing”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa - Problems of Mechatronics. Armament, Aviation, Safety Engineering 10 (1): 25-48, DOI: 10.5604/01.3001.0013.0794.
  • [16] Parate Ambadas Bhupesh, Sunil Chandel and Himanshu Shekhar. 2019 “Experimental and theoretical determination of Water-jet velocity for Disruptor Application using High Speed Videography” Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa - Problems of Mechatronics. Armament, Aviation, Safety Engineering 10 (2): 23-41, DOI: 10.5604/01.3001.0013.2114.
  • [17] Parate Ambadas Bhupesh, Sunil Chandel and Himanshu Shekhar. 2019. “A Novel Method for Dynamic Pressure and Velocity Measurement Related to a Power Cartridge Using a Velocity Test Rig for Water-Jet Disruptor Applications”. Central European Journal of Energetic Material 16 (3): 319 – 342, DOI: 10.22211/cejem/110365.
  • [18] Textbook of Ballistics and Gunnery, part I. (ed.: L.W. Longdon). 1987. London: Her Majesty’s Stationery Office.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ababbb3-f3c8-49a2-81e9-e1e7110f529e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.