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Abstract. We introduce and study the dominated edge coloring of a graph. A dominated
edge coloring of a graph G, is a proper edge coloring of G such that each color class is
dominated by at least one edge of G. The minimum number of colors among all dominated
edge coloring is called the dominated edge chromatic number, denoted by X%, (G). We obtain
some properties of X%, (G) and compute it for specific graphs. Also examine the effects on
X4om (G), when G is modified by operations on vertex and edge of G. Finally, we consider the
k-subdivision of G and study the dominated edge chromatic number of these kind of graphs.
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1. INTRODUCTION AND DEFINITIONS

Graph coloring is one of the best known, popular and extensively researched subject
in the field of graph theory, having many applications and conjectures, which are
still open and studied by various mathematicians and computer scientists along the
world. A proper vertex coloring problem for a given graph G is to color all the vertices
of the graph with different colors in such a way that any two adjacent (having an
edge connecting them) vertices of G have assigned different colors. Let G = (V, E)
be a simple graph and A € N. If f is a proper coloring of G with the coloring classes
Vi, Va, ..., V) such that every vertex in V; has color i, then sometimes proper coloring
write simply f = (V1,Va,...,Vy). The chromatic number x(G) of G is the minimum
of colors needed in a proper coloring of a graph. There are various interesting types of
vertex coloring other than the standard (proper) coloring, such as equitable vertex
coloring [12], circular vertex coloring [16], acyclic vertex coloring [11] and distinguishing
vertex coloring [5]. The other well-known and intensely studied type of graph coloring
besides vertex coloring is the edge coloring. Analogically to the definition of the vertex
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coloring, an edge coloring of a graph is an assignment of colors to the edges of the graph
so that no two incident edges have the same color. Similar to proper vertex coloring,
if f is a proper edge coloring of G with the coloring classes E1, Fs, ..., Ey such that
every edge in E; has color i, write simply f = (E1, Es, ..., E)). The edge chromatic
number x'(G) of G is the minimum of colors needed in a proper edge coloring of G.
A review of edge-coloring problems and its applications was given by Nakano, Zhou
and Nishizeki [17].

A dominator coloring of GG is a proper coloring of G such that every vertex of
G is adjacent to all vertices of at least one color class. The dominator chromatic
number y4(G) of G is the minimum number of color classes in a dominator coloring
of G. The concept of dominator coloring was introduced and studied by Gera, Horton
and Rasmussen [7]. For a graph G with no isolated vertex, the total dominator
coloring is a proper coloring of GG in which each vertex of the graph is adjacent to
every vertex of some (other) color class. The total dominator chromatic number,
abbreviated TD-chromatic number, x4(G) of G is the minimum number of color
classes in a TD-coloring of G. For more information see [8,9].

A set T of vertices is a total dominating set of G if every vertex of G is adjacent to at
least one vertex in 7. The total domination number v;(G) of G is the minimum number
of vertices in a total dominating set of G. A set F' of edges is an edge dominating
set of G if every edge not in F' is adjacent to at least one edge in F. A set D of edges
is a total edge dominating set of G if every edge in G is adjacent to at least one edge
in D. The edge domination number 7'(G) and the total edge domination number
v:(G) are the minimum number of edges in an edge dominating set and in a total edge
dominating set of G, respectively [13].

Dominated coloring of a graph is a proper coloring in which each color class is
dominated by a vertex. The least number of colors needed for a dominated coloring of
G is called the dominated chromatic number of G and denoted by X4om (G) ([2,6,14]).

Motivated by dominated chromatic number of graphs, we consider the proper edge
coloring of G and introduce the dominated edge chromatic number of G, x/,,..(G),
obtain some properties of x/, .. (G) and compute this parameter for specific graphs, in
the next section. In Section 3, we examine the effects on x/;,,.,(G) when G is modified
by operations on vertex and edge of G. Finally in Section 4, we study the dominated
edge chromatic number of k-subdivision of graphs.

2. INTRODUCTION TO DOMINATED EDGE CHROMATIC NUMBER

First we need to introduce some additional but standard notation and definitions.
The maximum degree of a graph G is denoted by A(G). The open and closed neigh-
borhood of a vertex x € V are denoted by N(z) and N|[z], respectively. The open
neighborhood of an edge e € E is N(e) = {¢/ € E : ¢ is adjacent to e}. We denote
by P, the path on n vertices and by C,, the cycle on n vertices. The complete graph
on n vertices is denoted by K. The complete bipartite graph with parts of orders r
and s is denoted by K, ; and the star is the complete bipartite graph K , with & > 1.
A bi-star By, 4 is a graph formed by two stars S, and S, by adding an edge between
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their center vertices. The join of two graphs G and H, denoted by G + H, is a graph
with vertex set V(G) UV (H) and edge set E(G)U E(H) U {uwv|u € V(G),v € V(H)}.

In this section, we state the definition of dominated edge chromatic number and
obtain this parameter for some specific graphs.

Definition 2.1. A dominated edge coloring of graph G is a proper edge coloring of
G in which every color class is dominated by at least one edge of G. More precisely,
a k-dominated edge coloring of G, is a proper k-coloring {C1,Cs,...,Cx} of G in
which for every ¢ € {1,2,...,k}, there exists an edge e € E such that C; C N(e).
The dominated edge chromatic number of G, x%,,,,(G), is the minimum number of
color among all dominated edge coloring of G.

By the definition, the dominated edge chromatic number of a graph G equals the
dominated chromatic number of the line graph L(G). Observe that x/, .. (G) > 1,
and x/,,,(G) = 1if and only if G is K. Also x},,,(G) = 7,(G), where v;(G) is total
edge domination number of G. To see the reason, consider a minimum dominated edge
coloring of G.

For constructing a total edge dominating set of G, Dj, from each color class we
take one of its dominating edges. The set Dj is an edge dominating set with cardinality
Xiom(G). Moreover, D; is a total edge dominating set, since each of its edges has
a color and is therefore dominated by some other edge of Dj.

Remark 2.2. For every graph G, x/,,,(G) = A(G) and this inequality is sharp.
As an example, for the star graph K n, X}jpm (K1,n) = n.

Remark 2.3. In a dominated edge coloring, every color can be used at most twice.
So if {C1,...,C:} is color classes of dominated edge coloring, then for every 1 < i < ¢,
|Ci| = 1 or |C;| = 2. Therefore for every graph G of size m, x/;,,,(G) > [%&].

Let us consider the following dominated edge colorings illustrated in Figures 1-3.

V45 V4541 V4542 V4343 V4544

Fig. 1. Dominated edge coloring for Ps

1 2 1 2 3 4 3 4

o e e .
€1 €2 €3 €4 €5 €6 €7 €g €4; €4i+1  C4i+2  €4i43

Fig. 2. Dominated edge coloring for P,
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Fig. 3. Dominated edge coloring of wheel W,, and friendship graph F,,, respectively

By Remark 2.3, Figures 1, 2 and 3 we have the following theorem which is about the
dominated edge chromatic number of path P,, cycle C,,, complete graph K,,, complete
bipartite graph K, ,,, wheel graph W,, and friendship graph F,, := K; + nKj:

Theorem 2.4.

(i) For every natural number n > 4,

|3

5 ifn=0 (mod 4),
XZlom(PTH-l) = X:iom(cn) = n
{§J +1 otherwise.

(ii) For every n > 4,
(iii) For every m,n > 2,

(iv) For anyn > 3,

(v) Forn >2,
Xiiom(Fn) =2n.

Theorem 2.5. If G is a connected graph containing P; as an induced subgraph, then
Xoom (G) = A(G) + 2. More generally, if the graph P, is an induced subgraph of G,
then XIdO/"L(G) Z A(G) + X/dO/In(Pnle)'

Proof. We assign A(G) colors to the edges which are incident to the vertex with
maximum degree A(G). Now we consider Py as induced subgraph of G. Since we need
two new colors for each four consecutive edges, so we have x5, (G) > A(G) + 2. The
proof of x%...(G) > A(G) + X}om (Pn—4) is similar. O
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Remark 2.6. The graph G in Figure 4 and its coloring shows that the lower bound
in Theorem 2.5 is sharp.

Fig. 4. Graph G with x},,, = A(G) + 2
Theorem 2.7.

(i) If a and b are two integers with a > b > 2 such that a > 2b, then there exists
a graph G with dominated edge chromatic number x'. . (G) = a and total edge
domination number v;(G) = b.

(ii) If @ and b are two integers with a > b > 2, then there exists a graph G with
dominated edge chromatic number x5, (G) = a and total edge domination number

7(G) =b.

Proof. (i) If a = 2b, then we consider the friendship graph F,. Therefore +,(Fp) = b
and X/, (Fu) = 2b. Now if a > 2b, then we add m = a — 2b pendant edges to center
of the friendship graph Fj, and call this new graph G (Figure 5). So x/,,,(G) = a and

7(G) =b.
m times < > b times

Fig. 5. The graph G in Theorem 2.7 (

(i) Consider the graph K4 , and bK;. If G is a graph which obtain by connecting
the b vertices of bK; to b leaves of K , (Figure 6), then x/,,.(G) = a and v{(G) = b.

. b times

Fig. 6. The graph G in Theorem 2.7 (ii)
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The corona of G and H is denoted by G o H, is a graph made by a copy of G
(which has n vertices) and n copy of H and joining the i-th vertex of G to every vertex
in the i-th copy of H. The following theorem gives the lower and the upper bounds
for the dominated edge chromatic number of G o H.

Theorem 2.8. Let G and H be two graphs of orders n and k, respectively.

(i) For even n,

EG E(H k k
’V‘ ( )|+‘2( )|+n —‘ SX&om(GOH)SX:iom(G)+nX:iom(H)+%7

(ii) For odd n,
E(G)|+|E(H)| +nk n—1)k

Proof. The left inequality follows as Remark 2.3. For the right inequality, we con-
sider a dominated edge coloring for G and H and color G and n copy of H with
Xiom (G) + X ljom (H) colors. Then, we color the other edges with % colors, if n is
even and with @ + k colors, if n is odd. This is a dominated edge coloring for
G o H and so we have the result. O

Theorem 2.9. Suppose that in a dominated edge coloring (with minimum number of
colors) of two graphs G and H of orders n and k, respectively, there is no color class
with size one. Then

(i) for even n,

Ko (G © H) = Xiom (€)X () + o

(ii) for odd n,

(n—1)k
2

Proof. Tt is similar to the proof of Theorem 2.8. O

Xiom (G © H) = Xatom (G) + nXaom (H) + +k

Remark 2.10. If ¢ is the number of color classes of size one in a dominated edge
coloring of two graphs G and H of order n and k, respectively, then

n
Xiiom(G © H) < X:iom(G) + nx:iom(H) + \‘EJ k—t.

The following theorem gives an upper bound for x/, .. (G + H).
Theorem 2.11. For two connected graph G and H,

V(G)| x |V(H

Xl (G H) < X (©) + X (1) + [ AL
Proof. We color the graph G with x/,,.(G) and the graph H with x/,,..(H) colors and
other edge with {W] new colors. So this is a dominated edge coloring. Note
|E(G)] (H)]

that if x};,,,(G) = =5~ and x/;,,,,(H) = ‘ET, then the inequality is sharp. O
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3. DOMINATED EDGE CHROMATIC NUMBER
OF SOME OPERATIONS ON A GRAPH

In this section, we examine the effects on x/, . (G) when G is modified by operations
on vertex and edge of G. The graph G —wv is a graph that is made by deleting the vertex
v and all edges incident to v from the graph G and the graph G — e is a graph that
obtained from G by simply removing the edge e. We present bounds for dominated
edge chromatic number of G — v and G — e. We begin with G — v.

Theorem 3.1. If G is a connected graph and v € V(G) is not a cut vertex of G, then

X:iom (G) - deg(v) < X:;lom(G - U) < X:iom(G) + deg(v)

Proof. First we prove the left inequality. We give a dominated edge coloring to G — v,
add v and all the corresponding edges. Then we assign deg(v) new colors to these
edges and do not changes the color of other edges. So this is a dominated edge coloring
of G and X/}, (G) < Xom (G — v) + deg(v).

For the right inequality, first we give a dominated edge coloring to G. In this case,
since v is not a cut vertex, each edges which is adjacent to an edge with endpoint v
has an other adjacent edge too. We change the color of this edge to a new color and
do this deg(v) times and do not change the color of the other edges. So this is an edge
dominated edge coloring of G — v and x/,,.,(G —v) < x/;,,(G) + deg(v). Therefore
we have the result. O

Remark 3.2. The upper bound in Theorem 3.1 is sharp. Consider the graph G in
Figure 7.

Fig. 7. The graph G in Theorem 3.1

By considering the graph in Figure 8, we have the following result.

v

Fig. 8. The graph G in Theorem 3.3
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Theorem 3.3. There is a connected graph G and a vertex v € V(G) which is not
a cut vertex of G such that |x,,,(G) — Xhom (G — v)| can be arbitrarily large.

Theorem 3.4. If G is a connected graph, and e = uv € E(G) is not a bridge of G,
then

X:iom(G) -1< X:iom(G - 6) < X:iom(G) + deg(v) -2

Proof. First we prove the left inequality. We give a dominated edge coloring to
G — e, then we add edge e. If we can give one of the previous colors to e, then
Xiom (G — €) = Xlom (G). Otherwise, we assign new color i to edge e. So we have
a dominated edge coloring for G and x7,,.,(G) < X}om (G —€) + 1.

Now we prove the right inequality. Let e = wv and deg(u) > deg(v). If e just
dominates its color class, then x/, . (G —e) = x/,,,(G). If e is the only edge that
dominates all adjacent color classes, then by removing e, some of these edges will not
dominated or previous coloring with removing e is not a dominated edge coloring.
Then we have to add new colors. Since e is not a bridge of G, there is a path between
u and v other than e. In this case, we need to add at least deg(v) — 2 color. We can use
two previous colors, the color of edge e and one of the previous colors (by Remark 2.3
and Theorem 2.4). So x/,,,(G —€) < X}om(G) + deg(v) — 2 and therefore we have the
result. O

Remark 3.5. The bounds in Theorem 3.4 are sharp. For the upper lower consider
the graph in Figure 9 and for the upper bound consider the graph in Figure 10.

4 4
2 2
2 4 2 4
1 1 1 1
3 3 3 3
5
e
G G-e

Fig. 9. The graph G in Theorem 3.4

Fig. 10. The graph G in Theorem 3.4



Introduction to dominated edge chromatic number of a graph 253

Theorem 3.6. There is a connected graph G and a vertex v € V(G) which is not
a cut vertex of G such that |x,m(G) = Xhom (G — €)| can be arbitrarily large.

Proof. We consider the graph in Figure 10 with e = uv such that deg(u) and deg(v)
are large enough. O

In a graph G, contraction of an edge e with endpoints u,v is the replacement
of uw and v with a single vertex such that edges incident to the new vertex are the
edges other than e that were incident with u or v. The resulting graph G/e has one
less edge than G. We denote this graph by G /e. We end this section with the following
theorem which gives bounds for x/,,.(G/e).

Theorem 3.7. Let G be a connected graph and e = wv € E(G). Then we have

Xiiom(G) -1< X/clom(G/e) < Xiiom(G) + mm{deg(u), deg(’u)} -1

Proof. First we prove the left inequality. We give a dominated edge coloring to G/e,
add e and assign it a new color, say ¢. This is a dominated edge coloring of G. So we
have X/, (G) < Xom(G/e) + 1.

For the right inequality, we give a dominated edge coloring to G. Suppose that
min{deg(u),deg(v)} = deg(u). Now we make G/e and change the color of adjacent
edge of e with endpoint u to new colors. So we have the result. O

Remark 3.8. The bounds in Theorem 3.7 are sharp. For the upper bound consider the
graph bi-star By, ; and for the lower bound consider C5 as G. Note that x/,, (Cs5) =3
and X/, (C1) = 2.

4. DOMINATED EDGE COLORING OF k-SUBDIVISION OF A GRAPH

The k-subdivision of G, denoted by G %, is constructed by replacing each edge v;v;
of G with a path of length k, say P{v#:%i}, These k-paths are called superedges, any new
vertex is an internal vertex, and is denoted by xi{vi’vj} if it belongs to the superedge
Pivivit < j with distance I from the vertex v;, where | € {1,2,...,k — 1}. Note
that for k = 1, we have G1 =G! = G, and if the graph G has v vertices and e edges,
then the graph G7* has v+ (k — 1)e vertices and ke edges. In this section, we study
dominated edge coloring of k-subdivision of a graph ([10]). In particular, we obtain

some bounds for x/,, (G%) and prove that for any k > 2, x/,. (G¥%) < Xgom(Gﬁrl).
Theorem 4.1. If G is a graph of size m, then x&om(G%) >m, for k > 3.

Proof. For k = 3, in any superedge P} such as {v,xiv’w},xgv’w},w}, the edge

xiv’w}xgv’w} need to use a new color in at least of its adjacent edges and we cannot

use this color in any other superedges. So we have the result. O O

Theorem 4.2. If G is a connected graph of size m and k > 2, then

Xiiom(P]H'l) < X;]om(G%) < mXiiom(Pk’-‘rl)'
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Proof. First we prove the right inequality. Suppose that e = wu; be an arbitrary
edge of G. This edge is replaced with the super edge P{%u1} in G%, with vertices
{u, x{u’ul}, e ,x,{i’fl}, u1}. We color this superedge with x/, . (Pr41) colors as a dom-
inated edge coloring of Pyy;. We do this for all superedges. Thus we need at most
MXjom (Pr+1) new colors for a dominated edge coloring of G*.

For the left inequality, if G is a path the result is true. So we suppose that G is
a connected graph which is not a path. Let ¢’ be a dominated edge coloring of G r.
The restriction of ¢ to edges of P{*} is a dominated edge coloring and so we have

the result. O

Remark 4.3. The lower bound of Theorem 4.2 is sharp for P, and by the following
Theorem we show that the upper bound of this Theorem is sharp for G = K; ,
and k£ > 3.

1
Theorem 4.4. Forn >3 and k > 3, X, (K{,,) = nX o (Prt1)-

Proof. Color all path connected to the center vertex with x/,,.. (Pk+1). This is a domi-
nated edge coloring. Because the colors adjacent to the center were used twice, by the
Remark 2.3, so we cannot use colors of one path to another path. Therefore we have
the result. O O

Theorem 4.5. If G is a connected graph and k = 0(mod4), then X:iom(G%) =
mX’dom(P]%Fl)'

Proof. By Remark 2.3 each color can be used at most twice. So we color each superedge
with X/, (Pet1) colors. Therefore X', (G%) = mx’y,. (Pii1)- O

Theorem 4.6. If G is a graph of size m and k # 0(mod 4) with k > 5, then

R

(i) if k = 1(mod4), then Xy, (GF) > mxyym (Pr),
(ii) if k = 2(mod4), then X;lom(Cf ) = MXom (Pe—1),
(iii) if k = (mod4), then Xy, (G*) > mx’y,,.,(Px).

~— F=

Proof. By Remark 2.3, in each superedge, each color can be used at most twice. So
we can use some of colors that used once. If k = 1(mod4), we need at least x/,,., (Px)
color in each superedges. If k = 2(mod4), we need at least x/,,..(Px—1) color in each
superedges and if k = 3(mod 4), we need at least x/,,,,(P) color in each superedges.
Therefore, we have the result. O

Theorem 4.7. For any k > 3, x:iom(G%) < Xgom(G#l),

Proof. First we give a dominated edge coloring of G . Let P{u*} be an arbitrary
1
superedge of G*1 with vertex set {v, :Ei"’w} xév’w}, e ,x,{cv’w}, w}. There exists an

iv’w}xév’w}, . ,xl{;u_’qi”}, x,{cv’w}}. Consider the graph in Figure 11.

)

edge u € {z
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Fig. 11. A part of a superedge in the proof of Theorem 4.7

We have the following cases:

Case 1. Suppose that the edge u has color ¢ and the edge n has color j and the edge
m has color ¢. In this case, we make G/u and do not change the color of any edge. So
without adding a new color we have a dominated edge coloring for this new graph.

Case 2. Suppose that the edge u has color 7 and the edge n has color j and the edge
m has color j. In this case, we make G /u and change one of the edge with color j to
color ¢ such that two edge with color ¢ not adjacent. So without adding a new color,
we have a dominated edge coloring for this new graph.

Now we do the same algorithm for all superedges. So we have a dominated edge
coloring again. O

Theorem 4.8. For any graph G, X, (G2) < Xy, (GF).

Proof. First we give a dominated edge coloring to the edges of G3. Let P{"#} be an
1

arbitrary superedge of G3 with edge set {s,v,u} (see Figure 12) and suppose that

edge v has the color <.

*——o— o — 0
S (% u

Fig. 12. A part of a superedge in the proof of Theorem 4.8

We have the following cases:

Case 1. The edge u has the color j and the edge s has the color ¢t. In this case, we
make G/v and don‘t change the color of any edges. So we have a dominated edge
coloring for this new graph.

Case 2. The edge u and v have the color j. In this case, we make G/v and change one
of the edge with color j to color i such that two edge with color ¢ not adjacent. So
without adding a new color we have a dominated edge coloring for this new graph.

Now we do the same algorithm for all superedge. Therefore we have a dominated
edge coloring again. O

5. CONCLUSION

In this paper, we have introduced the dominated edge coloring of a graph and have
obtained several results on the dominated edge chromatic number. In this respect,
there are many problems that are open. Let us list a few of them. In Theorems 2.8,
2.9 and 2.11 we have studied the dominated edge chromatic number for corona and
join products of two graphs. Now, we pose the following problem.
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Problem 5.1. What is the dominated edge chromatic number of Cartesian, lexico-
graphic and neighbourhood corona (see [3]) of two graphs.

In Section 4, we studied the dominated edge coloring of k-subdivision of a graph.
The m!" power of G, is a graph with same set of vertices of G and an edge between
two vertices if and only if there is a path of length at most m between them in G.
The fractional power of G, is m*" power of the n-subdivision of G, i.e., (G%)m or
n-subdivision of m-th power of @, i.c., (G™)% (see [4]). Note that the graphs (G=)™
and (G™)w are different graphs. In view of the results from Section 4 we pose another
problem.

Problem 5.2. Study and investigate the dominated edge chromatic number for the
fractional power of a graph.
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