PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the filling state of OSL detector traps with the optical sampling method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optically stimulated luminescence (OSL) and thermoluminescence (TL) methods are commonly used in dosimetry of ionizing radiation and dating of archaeological and geological objects. A typical disadvantage of OSL detectors is signal loss over a longer time scale. In this article, we present a method of studying this phenomenon as well as monitoring the state of the detector by means of optical sampling. The method was used to determine the OSL signal loss (fading) characteristics of selected potassium feldspars.
Rocznik
Strony
361--371
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., wzory
Twórcy
  • Jan Dlugosz University, Faculty of Science and Technology, Department of Advanced Calculation Methods, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
autor
  • Jan Dlugosz University, Faculty of Science and Technology, Department of Experimental and Applied Physics, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
  • Jan Dlugosz University, Faculty of Science and Technology, Department of Experimental and Applied Physics, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
Bibliografia
  • [1] Yukihara E. G., & McKeever S. W. S. (2011). Optically stimulated luminescence fundamentals and applications, Wiley.
  • [2] International Atomic Energy Agency. (2002). Dosimetry for Food Irradiation Technical Reports Series No. 409. Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/TRS409_scr.pdf
  • [3] Olko, P., Currivan, L., van Dijk, J. W. E., Lopez, M. A., & Wernli, C. (2006). Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe - a review based on the EU-RADOS questionnaire. Radiation Protection Dosimetry, 120(1-4), 298-302. https://doi.org/10.1093/rpd/nci538
  • [4] Olko, P. (2010). Advantages and disadvantages of luminescence dosimetry. Radiation Measurements, 45(3-6), 506-511. https://doi.org/10.1016/j.radmeas.2010.01.016
  • [5] McKeever S. W. S., Moskovitch M., & Townsend P. D. (1995). Thermoluminescence dosimetry materials: properties and uses. Nuclear Technology Publishing.
  • [6] Obryk, B., Bilski, P., & Olko, P. (2011). Method of thermoluminescent measurement of radiation doses from micrograys up to a megagray with a single LiF: Mg, Cu, P detector. Radiation Protection Dosimetry, 144(1-4), 543-547. https://doi.org/10.1093/rpd/ncq339
  • [7] Guérin, G., & Lefevre, J. C. (2014). A low cost TL-OSL reader dedicated to high temperature studies. Measurement, 49, 26-33. https://doi.org/10.1016/j.measurement.2013.11.035
  • [8] Bøtter-Jensen L., McKeever S. W. S., & Wintle A. G. (2003). Optically Stimulated Luminescence Dosimetry. Elsevier.
  • [9] Mihóková, K., & Nikl, M. (2014). Luminescent materials: Probing the excited state of emission centers by spectroscopic methods. Measurement Science and Technology, 26(1), 012001. https://doi.org/10.1088/0957-0233/26/1/012001
  • [10] Chruścińska, A., Palczewski, P., Rerek, T., Biernacka, M., & Lefrais, Y. (2021). Measurement of the paleodose in luminescence dating using the TM-OSL of quartz. Measurement, 167, 108448. https://doi.org/10.1016/j.measurement.2020.108448
  • [11] Mandowska E., & Mandowski A. (2019). Numerical analysis of a new spectrally resolved thermoluminescence measurement method. Measurement, 136, 603-607. https://doi.org/10.1016/j.measurement.2019.01.040
  • [12] Bulur, E., & Goksu, H. Y. (1998). OSL from BeO ceramics: new observations from an old material. Radiation Measurements, 29, 639-650. https://doi.org/10.1016/S1350-4487(98)00084-5
  • [13] Yukihara, E. G. (2011). Luminescence properties of BeO optically stimulated luminescence (OSL) detectors. Radiation Measurements. 46, 580-587. https://doi.org/10.1016/j.radmeas.2011.04.013
  • [14] Madden, L., Lukas, E., Santos, A., Ganija, M., Veitch, P., Rosenteld, A., & Li, E. (2021). Deconvolution analysis improves real-time OSL of BeO ceramic. Radiation Measurements, 149, 106680. https://doi.org/10.1016/j.radmeas.2021.106680
  • [15] Altunal, V., Guckan, V., Ozdemir, A., Zydhachevskyy, Y., Lawrence, Y., Yu, Y., & Yegingil, Z. (2022). Three newly developed BeO-based OSL dosimeters. Journal of Luminescence, 241, 118528. https://doi.org/10.1016/j.jlumin.2021.118528
  • [16] Sandeva, I., Spasevska, H., Ginovska, M., & Stojanovska-Georgievska, L. (2017). Effects of radiation doses on the photostimulated luminescence response of certain herbs and spices. Metrology and Measurement Systems, 24(1), 143-151. https://doi.org/10.1515/mms-2017-0003
  • [17] Biernacka M., & Mandowski A. (2013). Investigation of regeneration effect of blue luminescence in NaCI using variable delay optically stimulated luminescence (VD-OSL). Radiation Measurements, 56, 31-35. https://doi.org/10.1016/j.radmeas.2013.03.021
  • [18] Mandowski A., & Biernacka M. (2014). Anomalous regeneration of OSL in sodium chloride - experiment and modeling. Radiation Measurements, 71, 265-269. https://doi.org/10.1016/j.radmeas.2014.02.007
  • [19] Majgier, R., Tsvirko, M., & Mandowski, A. (2021). Optically stimulated luminescence decay and dosimetric properties of cerium-doped potassium sulfate phosphor. Luminescence, 36(4), 1089-1096. https://doi.org/10.1002/bio.4036
  • [20] Altunal, V., Guckan, V., Ozdemir, A., Can, N., & Yegingil, Z. (2019). Luminescence characteristies of Al-and Ca-doped BeO obtained via a sol-gel method. Journal of Physics and Chemistry of Solids, 131, 230-242. https://doi.org/10.1016/j.jpcs.2019.04.003
  • [21] Nascimento, L. F., Vanhavere, F., Silva, E. H., & De Deene, Y. (2015). A short-time fading study of AI2O3: C. Radiation Physics and Chemistry, 106, 26-32. https://doi.org/10.1016/j.radphyschem.2014.06.032
  • [22] Jain, M., & Ankjærgaard, C. (2011). Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements, 46, 292-309. https://doi.org/10.1016/j.radmeas.2010.12.004
  • [23] Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., & Sohbati, K. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Koreas, 41, 435-451. https://doi.org/10.1111/j.1502-3885.2012.00248.x
  • [24] Land, P. L. (1969). Equations for thermoluminescence and thermally stimulated current as derived from simple models. Journal of Physics and Chemistry of Solids, 30, 1693-1708. https://doi.org/10.1016/0022-3697(69)90237-6
  • [25] Mandowski. A. (2005). Semi-localized transitions model for thermoluminescence. Journal of Physics D: Applied Physics, 38, 17-21. https://doi.org/10.1088/0022-3727/38/1/004
  • [26] Chen, R., & McKeever, S. W. S. (1997). Theory of Thermoluminescence and Related Phenomena. World Scientific.
  • [27] Mandowski A., Mandowska, E., Kokot, L., Bilski, P., Olko, P., & Marczewska, B. (2010). Mobilny system wykrywania zagrożeń radiacyjnych przy użyciu mikrodetektorów OSL. Elektronika: konstrukcje technologie i zastosowania, 51(2), 136-138. http://yadda.icm.edu.pl/yadda/element/bwmetal.element.baztech-article-BWAN-0006-0026 (in Polish)
  • [28] Mandowska, E., Smyka, R., Mandowski. A., Kieszkowski. R., & Majgier, R. (2018). Czytnik OSL z nieliniową funkcją stymulacji optycznej. Elektronika: konstrukcje, technologie, zastosowania, 59(9). 12-15. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-a7dc845d-7b08-4c17-814d-4c5alfc53033
  • [29] Waldner, L., Rääf, C., & Bernhardsson, C. (2020). NaCl pellets for prospective dosimetry using optically stimulated luminescence: Signal integrity and long-term versus short-term exposure. Radial Environ Biophys, 59(4), 693-702. https://doi.org/10.1007%2Fs00411-020-00873-8
Uwagi
1. This work was supported by National Science Centre Grant no. 2018/31/B/ST10/03966
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ab90b9e-ee3c-438f-a901-011613ec31cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.