PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rat cancer cells necrosis induced by ultrasound

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sonodynamic therapy is the ultrasound dependent enhancement of the cytotoxic activities of certain drugs called sonosensitizers. The study of therapeutic efficacy of ultrasound is always preceded by in-vitro tests. In this work, two in-vitro sonication procedures were compared. One with the transducer positioned bellow the cell colony, radiating upward, with standing wave reflected from the water-air surface, the second, in the free field conditions. Efficiency of the cancer cells necrosis caused by ultrasound was compared with acoustical field intensity ISPTA measured by a hydrophone. The standing wave conditions effectively increased the intensity of the ultrasonic wave at the level of cells. To achieve 50% of cell viability, the intensity ISATA, decreased from 5.8 W/cm2 to 0.3 W/cm2. In summary, sonication in the standing wave conditions can effectively and reproducibly destroy cells by ensuring the sterility and without the risk of overheating.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
179--186
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
autor
  • Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
autor
  • Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warszawa, Poland
Bibliografia
  • [1] A. Castanoa, T. Demidovaa, M. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis and Photodynamic Therapy Vol. 1, 279-293, 2004.
  • [2] A. Castanoa, T. Demidovaa, M. Hamblin, Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death, Photodiagnosis and Photodynamic Therapy Vol. 2, 1-23, 2005.
  • [3] S. Umemura, K. Kawabata, K. Sasaki, N. Yumita, K. Umemura, R. Nishigaki, Recent advances in sonodynamic approach to cancer therapy, Ultrasonics Sonochemistry Vol. 3, S187-S191, 1996.
  • [4] K. Tachibana, L. B. Feril, Y. Ikeda-Dantsuji, Sonodynamic therapy, Ultrasonics Vol. 48, 253–259, 2008.
  • [5] I. Rosenthal, J. Sostaric, P. Riesz, Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound, Ultrasonics Sonochemistry Vol. 11, 349–363, 2004.
  • [6] L. B. Feril, K. Tachibana, K. Ogawa, K. Yamaguchi, I. Solano, Y. Irie, Therapeutic potential of low-intensity ultrasound (part 1): thermal and sonomechanical effects, J Med Ultrasonics Vol. 35, 153–160, 2008.
  • [7] L. B. Feril, K. Tachibana Y. Ikeda-Dantsuji, H. Endo, Y. Harada, T. Kondo, R. Ogawa, Therapeutic potential of low-intensity ultrasound (part 2): biomolecular effects, sonotransfection, and sonopermeabilization, J Med Ultrasonics Vol. 35, 161–167, 2008.
  • [8] N. Yumita, K. Kawabata, K. Sasaki, S. Umemura, Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro, Ultrasonics Sonochemistry Vol. 9, 259–265, 2002.
  • [9] S. Yamaguchi, H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, N. Kudo, Y. Kubota, S. Terasaka, K. Houkin, Sonodynamic therapy using water-dispersed TiO2- polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy, Ultrasonics Sonochemistry Vol. 18, 1197–1204, 2011.
  • [10] H. Tsuru, H. Shibaguchi, M. Kuroki, Y. Yamashita, M. Kuroki, Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer, Free Radical Biology and Medicine Vol. 53, 464–472, 2012.
  • [11] J. E. Maalouf, J.-C. Béra, L. Alberti, D. Cathignol, J.-L. Mestas, In vitro sonodynamic cytotoxicity in regulated cavitation conditions, Ultrasonics Vol. 49, 238–243, 2009.
  • [12] S. Iwabuchi, M. Ito, J. Hata, T. Chikanishi, Y. Azuma, H. Haro, In vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption, Biomaterials Vol. 26, 7104-7114, 2005.
  • [13] T. Kujawska, W. Secomski, K. Bilmin, A. Nowicki, P. Grieb, Impact of thermal effects induced by ultrasound on viability of rat C6 glioma cells, Ultrasonics Vol. 54, 1366- 1372, 2014.
  • [14] L. B. Feril, T. Kondo, Q.-L. Zhao, R. Ogawa, Enhancement of hyperthermia-induced apoptosis by non-thermal effects of ultrasound, Cancer Letters Vol. 178, 63–70, 2002.
  • [15] K.Milowska, T.Gabryelak, Enhancement of ultrasonically induced cell damage by phthalocyanines in vitro, Ultrasonics Vol. 48, 724–730, 2008.
  • [16] J.R. Eisenbrey, P. Huang, J. Hsu, M.A. Wheatley, Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents, Ultrasonics Vol. 49, 628-633, 2009.
  • [17] A. Watanabe, S. Kakutani, R. Ogawa, S. Lee, T. Yoshida, A. Morii, G. Kagiya, L. B. Feril, Jr. H. Fuse, T. Kondo, Construction of artificial promoters sensitively responsive to sonication in vitro, J Med Ultrasonics Vol. 36, 9–17, 2009.
  • [18] Encyclopedia of acoustics, edited by M. J. Crocker, John Wiley & Sons, New York, 12, 1997.
  • [19] Ultrasonic Exposimetry, edited by M.C. Ziskin, P. A. Lewin, CRC Press, Boca Raton, 91-125, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ab47ef3-2998-457d-9119-e861f2345155
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.