PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Coastal Physical Vulnerability to Climate Change Impacts along the Coast of Bolaang Mongondow Regency (North Sulawesi, Indonesia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to national climate resilience projections, the coastal area of Bolaang Mongondow has experienced an increase in wave height of around 1 meter. It is in the top priority category with high potential hazards and vulnerability or risk of climate change disasters. The rise of the global sea level affects the increase in coastal submergence and erosion and increases the frequency of overtopping of coastal buildings. This research aimed to analyze the extent of the physical vulnerability of coastal Bolaang Mongondow related to the climate change impacts. The coastal area of Bolaang Mongondow was chosen because it is a coastal area with varied lowlands that directly face the Sulawesi Sea (Pacific Ocean). The vulnerability assessment method used in this study was calculating the Coastal Vulnerability Index (CVI). Spatial data interpretation of the parameters of coastal geomorphology, elevation, coastal slope, shoreline change, sea level rise, tides, and significant wave height will contribute to the final vulnerability index value. The results showed that the weight of each analyzed variable varied, ranging from not vulnerable, moderate, vulnerable, and very vulnerable. The CVI assessment shows the less vulnerable category class in all analyzed coastal areas, with index values of 5.86 in Poigar District, 13.1 both in East Bolaang and Bolaang Districts, 14.6 in Lolak District, and 6.55 in Sangtombolang District. Thus, this research concludes that the physical condition of the Bolaang Mongondow coast is less vulnerable to the impacts of climate change. However, it is still threatened in several specific aspects. Although it has not considered socio-economic factors, the assessment of the physical vulnerability of the Bolaang Mongondow coastline produced in this study can be used to formulate targeted mitigation strategies and adaptation measures in the area.
Twórcy
  • Department of Environmental Management, Graduate School, Hasanuddin University, Makassar 90245, Indonesia
  • Institute of Research and Community Service, Center for Climate Change Studies, Hasanuddin University, Makassar 90245, Indonesia
  • Department of Marine Science, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar 90245, Indonesia
Bibliografia
  • 1. Abuodha, P.A.O., Woodroffe, C.D. 2010. Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia. Journal of Coastal Conservation, 14(3), 189–205. https://doi.org/10.1007/s11852-010-0097-0
  • 2. National Development Planning Agency. 2018. Scientific base assessment of climate change hazards. In National Action Plan for Climate Change Adaptation.
  • 3. National Development Agency. 2021. Exclusive summary: Climate Resilience Development Policy 2020-2021. 10.
  • 4. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377. https://doi.org/https://doi.org/10.1111/j.1461-0248.2011.01736.x
  • 5. Benkhattab, F.Z., Hakkou, M., Bagdanavičiūtė, I., Mrini, A. El, Zagaoui, H., Rhinane, H., Maanan, M. 2020. Spatial-temporal analysis of the shoreline change rate using automatic computation and geospatial tools along the Tetouan coast in Morocco. Natural Hazards, 104(1), 519–536. https://doi.org/10.1007/s11069-020-04179-2
  • 6. Boruff, B.J., Emrich, C., Cutter, S.L. 2005. Erosion hazard vulnerability of US coastal counties. Journal of Coastal Research, 21(5), 932–942. https://doi.org/10.2112/04-0172.1
  • 7. BPS. 2019. Bolaang Mongondow Regency in Figures 02155-6431, 1–236.
  • 8. Cheng, J., Wang, P. 2022. Factors controlling storminduced morphology changes at an erosional hot spot on a nourished beach, Sand Key Barrier Island, West-Central Florida. Journal of Coastal Research, 38(4), 750–765. https://doi.org/10.2112/JCOASTRES-D-21-00083.1
  • 9. Cintra, A.K.A., Setyobudiandi, I., Fahrudin, A. 2017. Analysis of fishing vulnerability against climate change on a province scale (province scaled fisheries vulnerability on climate change). Marine Fisheries: Journal of Marine Fisheries Technology and Management, 8(2), 223–233. https://doi.org/10.29244/jmf.8.2.223-233
  • 10. Copernicus Climate Change Service, Climate Data Store, 2018: Sea level gridded data from satellite observations for the global ocean from 1993 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.4c328c78 (Accessed on 11-07-2024).
  • 11. Davidson-Arnott, R., Bauer, B., Houser, C. 2019. Introduction to coastal processes and geomorphology (2nd ed.). Cambridge University Press. https:// doi.org/10.1017/9781108546126
  • 12. Denmark, C., Davidson, O., Leone, S., Uk, M.G., Denmark, K.H. 2001. Technical ummary of limate change 2001: Mitigation a report of working group III of the Intergovernmental Panel on Climate Change lead authors: Review Editor: Change.
  • 13. Elko, N., Foster, D., Kleinheinz, G., Raubenheimer, B., Brander, S., Kinzelman, J., Kritzer, J., Munroe, D., Storlazzi, C., Sutula, M., Mercer, A., Coffin, S., Fraioli, C., Ginger, L., Morrison, E., ParentDoliner, G., Akan, C., Canestrelli, A., Dibenedetto, M., Simm, J. 2022. Human and ecosystem health in coastal systems.
  • 14. Fahmi, R., Saleh, S.M., Isya, M. 2017. Effect of seawater soaking time on durability of concrete asphalt mixtures using pen.60/70 asphalt substituted with Ethylene Vinyl Acetate (Eva) waste. Civil Engineering Syiah Kuala University, 6(3), 271–282.
  • 15. Georgiou, I. Y., FitzGerald, D.M., Hanegan, K.C. 2024. Storm and tidal interactions control sediment exchange in mixed-energy coastal systems. Pnas Nexus, 3(2), 42. https://doi.org/10.1093/pnasnexus/pgae042
  • 16. Gornitz, V. 1991. Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 89(4), 379–398. https://doi.org/10.1016/0031-0182(91)90173-O
  • 17. Gornitz, V. 1997. Effects of anthropogenic interventions in the land hydrologic cycle on global sea level rise. 14, 147–161.
  • 18. Gornitz, V., Kanciruk, P. 1989. Assessment of global coastal hazards from sea level rise. https://www.osti.gov/biblio/5966579
  • 19. Hammar-Klose, E.S., Pendleton, E.A., Thieler, E.R., Williams, S.J. 2003. Coastal vulnerability assessment of Cape Cod National Seashore to sea-level rise. In Open-File Report. https://doi.org/10.3133/ofr02233
  • 20. Hamuna, B., Kalor, J.D., Tablaseray, V.E. 2019. The impact of tsunami on mangrove spatial change in eastern coastal of Biak Island, Indonesia. Journal of Ecological Engineering, 20(3), 1–6. https://doi.org/10.12911/22998993/95094
  • 21. Handartoputra, A., Purwanti, F., Hendrarto Department of Aquatic Resources Management, B., Fisheries Faculty of Fisheries and Marine Science, J., Diponegoro Jl Soedarto, U. 2015. Coastal vulnerability assessment at Sendang Biru Beach, Malang Regency towards oceanography variables based on CVI (Coastal Vulnerability Index) method. Diponegoro Journal of Maquares, 4(1), 91–97. http://ejournal-s1.undip.ac.id/index.php/maquares
  • 22. Harvey, N., Nicholls, R. 2008. Global sea-level rise and coastal vulnerability. Sustainability Science, 3, 5–7. https://doi.org/10.1007/s11625-008-0049-x
  • 23. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. 2023: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47 (Accessed on 11-07-2024).
  • 24. Hinkel, J., Klein, R.J.T. 2009. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Global Environmental Change, 19(3), 384–395. https://doi.org/ https://doi.org/10.1016/j.gloenvcha.2009.03.002
  • 25. Huda, A.C., Pratikto, I., Pribadi, R. 2019. Land characteristics on coastal vulnerability of Rembang Regency, Central Java. Journal of Marine Research, 8(3), 253–261. https://doi.org/10.14710/jmr.v8i3.25268
  • 26. ICCSR. 2010a. Iccsr. In Marine and Fisheries Sector.
  • 27. ICCSR. 2010b. Indonesia Climate Change Sectoral Roadmap (ICCSR). Bappenas Library, September 2016, 58.
  • 28. Intergovernmental Panel on Climate Change (IPCC). 2023. Oceans and coastal ecosystems and their services. In Climate Change 2022 – Impacts, Adaptation and Vulnerability. https://doi.org/10.1017/9781009325844.005
  • 29. IPCC. 2014. A “missing” family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44(8), 31. https://doi.org/10.1088/1751-8113/44/8/085201
  • 30. Hecht J.E. 2016. Indonesia: Costs of climate change in 2050. Usaid, May, 32. https://www.climatelinks.org/sites/default/files/asset/document/IndonesiaCostsofCC2050PolicyBrief.pdf
  • 31. Kumar, T.S., Mahendra, R.S., Nayak, S., Radhakrishnan, K., Sahu, K.C. 2010. Coastal vulnerability assessment for Orissa State, East Coast of India. Journal of Coastal Research, 26(3), 523–534. https://doi.org/10.2112/09-1186.1
  • 32. Lesmana, N.T., Haykal, M.F. 2021. Bathymetry mapping in coastal development planning. Journal of Empowerment Community and Education, 1(2), 1–7.
  • 33. Lyddon, C., Brown, J., Leonardi, N., Plater, A. 2019. Increased coastal wave hazard generated by differential wind and wave direction in hyper-tidal estuaries. Estuarine, Coastal and Shelf Science, 220, 131– 141. https://doi.org/10.1016/j.ecss.2019.02.042
  • 34. Mackay, A. 2008. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel On Climate Change. In Journal of Environmental Quality, 37(6). https://doi.org/10.2134/jeq2008.0015br
  • 35. Malehmir, A., Socco, L.V., Bastani, M., Krawczyk, C., Pfaffhuber, A., Miller, R.D., Maurer, H., Frauenfelder, R., Suto, K., Bazin, S., Merz, K., Dahlin, T. 2016. Near-surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future. In Advances in Geophysics 57, 51–146. https://doi.org/10.1016/bs.agph.2016.08.001
  • 36. Marwasta, D., Priyono, K.D. 2016. Analysis of settlement characteristics of coastal villages in Kulonprogo Regency. Forum Geography, 21(1), 57–68. https://doi.org/10.23917/forgeo.v21i1.1819
  • 37. Mokoginta, M.P.A., Amir, A., Tanjung, I.L., Hamid, A.R. 2023. Tracing the maritime footsteps of the Bolaang Mongondow people: XVI–XIX centuries. Gema Wiralodra, 14(1), 137–155. https://doi.org/10.31943/gw.v14i1.376
  • 38. Molle, B., Schaduw, J., Sumilat, D., Rondonuwu, A., Luasunaung, A., Warouw, V. 2022. Analysis of weather conditions and hydrodynamics in Bunaken National Park. Platax Scientific Journal, 10, 320. https://doi.org/10.35800/jip.v10i2.43161
  • 39. Mulyabakti, C., Jasin, M.I., Mamoto, J.D. 2016. On the Paal beach area of East Likupang District. Journal of Civil Statics, 4(9), 585–594.
  • 40. Pendleton, E.A., Thieler, E.R., Williams, S.J. 2010. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. Journal of Coastal Research, 26(1), 176– 183. http://www.jstor.org/stable/27752797
  • 41. Pratiwi, P.H., Dwiningrum, S.I.A., Sumunar, D.R.S. 2023. Integrated disaster risk management in the education process in schools. Journal of Integrated Disaster Risk Management, 13(1), 172–192. https://doi.org/10.5595/001C.91284
  • 42. Sanford, L., Gao, J. 2017. Influences of wave climate and sea level on shoreline erosion rates in the Maryland Chesapeake bay. Estuaries and coasts, 41, 1–19. https://doi.org/10.1007/s12237-017-0257-7
  • 43. Muis, S., Apecechea, M.I., Álvarez, J.A., Verlaan, M., Yan, K., Dullaart, J., Aerts, J., Duong, T., Ranasinghe, R., le Bars, D., Haarsma, R., Roberts. M. 2022. Global sea level change indicators from 1950 to 2050 derived from reanalysis and high resolution CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.6edf04e0 (Accessed on 05-07-2024)
  • 44. Suhana, M.P., Nurjaya, I.W., Natih, N.M. 2017. Vulnerability analysis of east Coast of Bintan Island, Riau Islands Province using digital shoreline analysis system and coastal vulnerability index Method. Journal of Fisheries and Marine Technology, 7(1), 21–38. https://doi.org/10.24319/jtpk.7.21-38
  • 45. Supriyadi, I.H., Wahyudi, A.J., Iswari, M.Y., As, S. 2019. Adaptation to the impact of climate change in coastal communities. In Indonesian Institute of Sciences (December Issue).
  • 46. Suroso, D.S.A., Hadi, T.W., Latief, H., Riawan, E. 2011. Indonesia’s coastal vulnerability patterns to climate change impacts as a basis for adaptation planning. Journal of Tata Loka, 13(2), 108–118.
  • 47. Thieler, E.R., Hammar-Klose, E.S. 1999. National assessment of coastal vulnerability to sea-level rise: Preliminary results for the U.S. Atlantic Coast. In Open-File Report. https://doi.org/10.3133/ofr99593
  • 48. Vinata, R.T., Kumala, M.T., Yustisia Serfiyani, C. 2023. Climate change and reconstruction of Indonesia’s geographic basepoints: Reconfiguration of baselines and Indonesian Archipelagic Sea lanes. Marine Policy, 148, 105443. https://doi.org/https://doi.org/10.1016/j.marpol.2022.105443
  • 49. Yuliani, A.D., Rejeki, H.A. 2020. The effect of waves on abrasion in the coastal Regencies of Demak, Kendal, and Semarang City. Indonesian Journal of Oceanography, 2(4), 378–385. https://doi.org/10.14710/ijoce.v2i4.9290
  • 50. Zlateva, P., Velev, D. 2024. A vulnerability analysis of business to climate-related hazards. IDRiM Journal, 14, 169–180. https://doi.org/10.5595/001c.92697
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aac9b86-c43e-4659-9c82-f44ad11bd8f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.