
ADVANCES IN COMPUTER SCIENCE RESEARCH

ALGORITHM OF ADDING THE M-BIT NUMBERS

Katarzyna Woronowicz

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In the classic algorithm of adding two m-bit numbers with carries we add a single
bits of the added numbers on each of the m positions. If we assume for a single iteration of
the algorithm to calculate the value of a single bit of the sum, then for each pair of m-bit
numbers the algorithm executes m iterations. In this paper we propose a recursive algorithm
of adding two numbers for which the number of the executed iterations is variable and ranges
from 0 to m.

Keywords: addition, adding two numbers

1. Introduction

Adding numbers is a basic arithmetic operation performed by a computer. The best
known algorithm of adding two binary numbers with carries works in the same way
as the algorithm of adding two numbers represented in any positional system - it
calculates the sum of the numbers in each position, and if the sum exceeds the base
of the system, adds one to the next position. The classical algorithm and its time
complexity is described, among others, in positions [2] and [1]. The practicalities of
the issue of adding numbers is described for instance in [3]. In this paper we look
at the binary numbers as sequences of bits, on which we perform logical operations.
As a result, we found a new algorithm for calculating the sum of two numbers. Each
iteration of the algorithm determines the successive approximations of the sum of two
input numbers. Execution time depends on the structure of the binary representation
of these numbers - the maximum number of iterations, required to determine the
sum of two numbers, is equal to the length of the binary representation of the input
numbers.

In this paper we present an algorithm of adding two positive integers which
uses three bitwise operations: xor, and, shift to the left by one position. We prove
its correctness and also present an alternative version of the algorithm, based on a

Advances in Computer Science Research, vol. 12, pp. 95-108, 2015.

95

Katarzyna Woronowicz

recursive equation of the second degree. We calculate the average and the pessimistic
time complexity of the algorithm. In the last section we summarize the average and
pessimistic time complexity of the algorithm for different sizes of input data.

In this paper we use the following notation: additive group modulo 2m is denoted
by (Z2m ,⊕) and the inverse of the element p ∈ Z2m is denoted by 	p. The group of
bit sequences X with xor operation is denoted as (X ,⊗). The expressions p « k, p » k
mean shifting a sequence of bits p of k positions to the left or to the right respectively.
The length of a bit sequence is denoted by m. In the binary representation of the
number p bits are numbered from right to the left, i.e. p = [pm−1, pm−2, . . . , p1, p0].
The i-th bit of the number p is denoted by pi. Notation p[j...i], where j > i, means a
fragment of the binary representation of the number p from the i-th bit to the j-th bit.

2. Algorithm

In this section we introduce the recursive algorithm of adding two m-bit numbers.
The basic form of the algorithm is presented in the Theorem 1. The alternative form
of the algorithm is described in the Proposition 1.

Lemma 1. Let p,q ∈ Z2m . Then:

1. p⊗q = (p∨q)⊕ ((p∧q)),
2. p⊕q = (p∨q)⊕ (p∧q),
3. p⊕q = (p⊗q)⊕ ((p∧q) « 1) .

Proof.

1. Note that:

(p∧q)⊗ p = (¬(p∧q)∧ p)∨ (p∧q∧¬p) = (¬(p∧q)∧ p) =

((¬p∨¬q)∧ p) = (¬p∧ p)∨ (¬q∧ p) = p∧¬q,

therefore:

p⊗q = (p∨q)∧ (¬(p∧q)) = ((p∨q)∧ (p∧q))⊗ (p∨q) = (p∧q)⊗ (p∨q).

If the i-th bit of the expression p∧q is equal 1, then the i-th bit of the expression
p∨ q is also equal 1. Therefore, when we subtract p∧ q of p∨ q we have no
borrows and an operation (p∨q)⊕ ((p∧q)) is equivalent to xor operation (p∨
q)⊗ (p∧q).

96

Algorithm of adding the m-bit numbers

2. Consider two numbers p,q ∈ Z2m . Note that:

p∨ (¬p∧q) = (p∨¬p)∧ (p∨q) = 1∧ (p∨q) = p∨q

and

q∧ (¬(¬p∧q)) = q∧ (p∨¬q) = (q∧ p)∨ (q∧¬q) = (p∧q)∨0 = p∧q.

Because p∧ (¬p∧ q) = 0, i.e. there is no index i such that the i-th bit of the
expression p is equal 1 and the i-th bit of the expression (¬p∧ q) is equal 1, so
when we add p and ¬p∧q we have no carries and:

p∨ (¬p∧q) = p⊕ (¬p∧q).

Similarly if the i-th bit of ¬p∧q is equal 1, then the i-th bit of q also is equal 1,
so:

q∧ (¬(¬p∧q)) = q⊕ ((¬p∧q)).

Thus, finally:

p⊕q = p⊕ (¬p∧q)⊕q⊕ ((¬p∧q)) = (p∨q)⊕ (p∧q).

3. Because p⊗q = (p∨q)⊕ ((p∧q)), so p∨q = (p⊗q)⊕ (p∧q). Thus:

p⊕q = (p∨q)⊕ (p∧q) = (p⊗q)⊕ (p∧q)⊕ (p∧q) = (p⊗q)⊕ ((p∧q) « 1) .

�

Theorem 1. Let p,q∈Z2m . Then p⊕q= pm, where pm is the m-th term of a sequence
defined as follows: 

p0 = p
q0 = q
pn+1 = pn⊗qn

qn+1 = (pn∧qn) « 1

(1)

Proof. In the proof we use induction due to the m.

1. If m = 1 then p⊕q = p⊗q = p1.

97

Katarzyna Woronowicz

2. Let n < m.
Suppose that: if p,q ∈ Z2n , then p⊕q = pn.
We show that: if p,q ∈ Z2n+1 , then p⊕q = pn+1.
For the proof, consider the first iteration of the algorithm. Note that:

(p⊕q)0 = (p⊗q)0.

Indeed, the expression (pn∧qn) « 1 is always an even number, which means that
((pn∧qn) « 1)0 = 0. Therefore:

(p⊕q)0 = (p⊗q)0⊗ ((pn∧qn) « 1)0 = (p⊗q)0⊗0 = (p⊗q)0 = p0
1.

Denote (p⊗q)0 as r0. Now we consider the remaining n bits of the numbers p1
and q1:

p[n...1]1 = (p⊗q) » 1,

q[n...1]1 = ((p∧q) « 1) » 1 = p∧q.

Note that (n+ 1)-th term of the sequence {pk}k∈N for numbers p, q is equal to
n-th term of the sequence {pk}k∈N for numbers p⊗q = p1 and (p∧q) « 1 = q1.
Furthermore:

p⊕q = p1⊕q1 = (p⊗q)⊕ ((p∧q) « 1).

Since, by Lemma (1), p⊕ q = (p⊗ q)⊕ ((p∧ q) « 1) and because the length of
sequences p[n...1]1 , q[n...1]1 equals n, so from the assumption:

p[n...1]1 ⊕q[n...1]1 = (p[n...1]1 ⊗q[n...1]1)⊕ ((p[n...1]1 ∧q[n...1]1) « 1) = p[n...1]n+1 .

If we include bits of p0 and q0 we obtain:

((p1⊕q1) « 1)⊕ r0 = ((((p⊗q) » 1)⊕ (p∧q)) « 1)⊕ r0 =
((((((p∨q)⊕ ((p∧q))) » 1)⊕ (p∧q))) « 1)⊕ r0 =
((((p∨q) » 1)⊕ ((p∧q) » 1)) « 1)⊕ r0 = (p∨q)⊕ (p∧q)⊕ r0 = p⊕q. �

Lemma 2. Let p,q ∈ Z2m . Then:

p∧ (p⊕q) = p∧¬q.

98

Algorithm of adding the m-bit numbers

Proof. Note that:

p∧ (p⊕q) = p∧ ((¬p∧q)∨ (p∧¬q)) =
= (p∧ (¬p∧q))∨ (p∧ (p∧¬q)) = 0∨ (p∧¬q) = (p∧¬q).

�

Proposition 1. System of recursive equations (1) can be converted into the recursive
equation of the second degree:

pn+2 = pn+1⊗ ((pn∧¬pn+1) « 1). (2)

Proof. By definition pn+2 = pn+1⊗ qn+1 and qn+1 = (pn∧ qn) « 1. Because pn+1 =
pn⊗qn, so qn = pn⊗ pn+1. Thus:

pn+2 = pn+1⊗qn+1 = pn+1⊗ ((pn∧qn) « 1) =
= pn+1⊗ ((pn∧ (pn⊗ pn+1)) « 1).

By Lemma (2) we have pn∧ (pn⊗ pn+1) = pn∧¬pn+1, so we obtain:

pn+2 = pn+1⊗ ((pn∧¬pn+1) « 1).

�

2.1 Stopping conditions

Note that if the term qn = 0, then qn+1 = . . . = qm = 0 and pn = pn+1 = . . . = pm.
Indeed, if qn = 0, then:

pn+1 = pn⊗qn = pn⊗0 = pn

and:
qn+1 = (pn∧qn) « 1 = (pn∧0) « 1 = 0.

It means that if qn = 0, then for all i = n+ 1, . . . ,m the term pi = pn, therefore if
qn = 0, then p⊕q is equal to pn and we can stop the algorithm - successive iterations
will not change the result. Consequently, if q = 0, the number of iterations is equal to
0. Hence we can formulate the following lemma:

Lemma 3.

1. The algorithm (1) executes more than n iterations if and only if qn 6= 0.
2. The algorithm (1) executes exactly n + 1 iterations if and only if qn 6= 0 and

qn+1 = 0.

99

Katarzyna Woronowicz

2.2 Example

Let p = p0 = 2210 = 101102, q = q0 = 2710 = 110112, m = 5. Then:

p1 = p0⊗q0 = 10110⊗11011 = 01101
q1 = (p0∧q0) « 1 = (10110∧11011) « 1 = 00100

p2 = p1⊗q1 = 01101⊗00100 = 01001
q2 = (p1∧q1) « 1 = (01101∧00100) « 1 = 01000

p3 = p2⊗q2 = 01001⊗01000 = 00001
q3 = (p2∧q2) « 1 = (01001∧01000) « 1 = 10000

p4 = p3⊗q3 = 00001⊗10000 = 10001
q4 = (p3∧q3) « 1 = (00001∧10000) « 1 = 00000

According to the Lemma 3, the next iteration is not necessary: the term
p5 = p4 ⊗ q4 = 10001⊗ 00000 = p4 and the term q5 = (p4 ∧ q4) « 1 = (10001∧
00000) « 1 = 00000 = q4. Note that in one case the order of input numbers p and q
is important. If p 6= 0 and q = 0 then the algorithm executes no iteration, but if p = 0
and q 6= 0 then is executed one iteration.

3. Time complexity

The single iteration of the basic algorithm (1) executes three operations: xor, and,
shift to the left by one position. Let us assume that the elementary operation of the
algorithm is to execute one of those three bitwise operations. This is a simplification,
because each of this operation in fact works on m-bit sequences. However, note that if
k-th bit is the first nonzero bit of the number pn∧qn, then p[k,k−1,...,0]

n = p[k,k−1,...,0]
n+1 =

. . .= p[k,k−1,...,0]
m . Consequently, it is not necessary to execute operations on all m bits.

In this paper we have focused mainly on the number of iterations executed by an al-
gorithm, so we assume this simplification. Then the number of elementary operations
which executes algorithm while adding of two numbers is equal to the number of iter-
ations multiplied by three. Therefore, in order to examine the time complexity of the
algorithm, we should count pessimistic and average number of executed iterations.
Note that the minimum number of iterations is equal to 0 and the maximum number
of iterations is equal to m.

100

Algorithm of adding the m-bit numbers

3.1 Average time complexity

Let p,q ∈ Zm. To determine the average time complexity of the algorithm we should
calculate for how many pairs (p,q) the algorithm executes a given number of itera-
tions. By Lemma (3), the algorithm executes more than 0 iterations if and only if:

q0 6= 0. (3)

It is easy to count that the number of pairs (p,q) for which condition 3 is fulfilled
is equal to 2m · (2m−1).

By Lemma (3), a necessary and sufficient condition that the number of executed
iterations is greater than 1 is:

q1 = (p0∧q0) « 1 6= 0. (4)

We count for how many pairs (p,q) this condition is fulfilled. Expression p∧q is
non-zero if and only if there exists index i such that pi = qi = 1. Because we consider
the expression (p∧q) « 1, so for i = m−1 we have:

p∧q = 2m−1⊕ (p∧q)[m−2,...,0]

and:
(p∧q) « 1 = (2m−1⊕ (p∧q)[m−2,...,0]) « 1 = (p∧q)[m−2,...,0] « 1,

so such choice of an index i does not guarantee that the condition (4) is fulfilled. Thus
i ∈ {0,1, . . . ,m−2}.

To compute for how many pairs (p,q) there exists at least one index i such that
pi = qi = 1 we use the inclusion-exclusion principle. First we calculate the number
of pairs (p,q) such that an index i is fixed and remaining bits of numbers p, q take
all possible values. It means, that for a fixed index i there exists an index j 6= i such
that p j = q j = 1 and some pairs (p,q) are computed more than once - sets of pairs
(p,q) such that pi = qi = 1 and p j = q j = 1 are not disjoint. Thus in the next step we
compute for how many pairs there exists two indices i1, i2 such that pi1 = qi1 = 1 and
pi2 = qi2 = 1, then we do the calculations for the 3,4, . . . ,k indices and we apply the
inclusion-exclusion principle.

We consider the case when there is at least one fixed index i such that pi =
qi = 1. We can choose the index i in m− 1 ways, the remaining m− 1 bits of the
number p and m−1 bits of the number q we fill in all possible ways, therefore there
is (m−1) · (2m−1)2 pairs (p,q) satisfying the condition.

Now we count for how many pairs there are at least two fixed indices i1, i2
such that pi1 = qi1 = 1 and pi2 = qi2 = 1. We can choose indices in

(m−1
2

)
ways, the

101

Katarzyna Woronowicz

remaining m− 2 bits of p and q take all possible values, so there is
(m−1

2

)
· (2m−2)2

possibilities.
Generally for k indices i1, . . . , ik, k ≤ m− 1, there is

(m−1
k

)
· (2m−k)2 pairs such

that pi1 = qi1 = 1, . . . , pik = qik = 1. Thus, from inclusion-exclusion principle, a num-
ber of pairs for which (p∧q) « 1 6= 0 is equal to:

m−1

∑
i=1

(−1)i+1 ·
(

m−1
i

)
· (2m−i)2.

Using similar reasoning we count for how many pairs the algorithm executes
more than two iterations. By lemma (3), this is true if and only if:

q2 = (p1∧q1) « 1 = ((p0⊗q0)∧ ((p0∧q0) « 1)) « 1 6= 0. (5)

The condition (5) is fulfilled if and only if for a pair (p,q) there exists an index
i such that:

(p⊗q)i = ((p∧q) « 1)i = 1 (6)

and
(p⊗q)i+1⊗ ((p∧q) « 1)i+1 = 1. (7)

We count the number of the pairs (p,q) for which there exists at least one fixed
index i such that conditions (6), (7) are fulfilled. Note that after the second iteration
of the algorithm we execute two shifts to the left by one position. It means that, as in
the previous case, that if i = m− 2, then condition (5) need not to be fulfilled. It is
obvious, that if i = m−1, then (7) is not satisfied, because p and q are m-bit numbers
and bits pm, qm do not exist. Therefore i ∈ {0,1, . . . ,m− 3}. Besides, the condition
(7) means that if we choose an index i, then we have two possibilities for bits pi+1

and qi+1

pi+1 = 0 and qi+1 = 1 (8)

or:

pi+1 = 1 and qi+1 = 0 (9)

Thus the number of pairs p, q for which there exists at least one fixed index i
satisfying the conditions (6) and (7) is equal to (m−2) · (2m−2)2 ·2.

Denote the number of possible choices of k indices i1, . . . , ik, k ≤ b (m−1)
2 c, as

a2
m,k. If we choose sets of k indices for the pair (p[m−2,...,0],q[m−2,...,0]), then all of

102

Algorithm of adding the m-bit numbers

these sets of k indices can be chosen for the pair (p,q). Additionally we can choose
sets containing index m−1. Since the choice of index i causes that index i+1 cannot
be selected, we should consider all possible k− 1-element sets of indices without
index m−2 and add index m−1 to all of them, which means that we choose all sets
of indices for the pair p[m−3,...,0], q[m−3,...,0]. Therefore a sequence {a2

m,k} is defined
by the following recursive equation:{

a2
m,k = m−2 , k = 1,m≥ 3,

a2
m,k = a2

m−1,k +a2
m−2,k−1 , k > 1,m≥ 3.

(10)

If we choose k indices i1, . . . , ik, then each pair of bits pi j+1, qi j+1, j = 1, . . . ,k
must satisfy condition (7), so each such pair fulfill condition (8) or (9). The remaining
m−2k bits of p and q take all possible values, so from inclusion-exclusion principle,
the number of pairs for which conditions (6) and (7) are satisfied is equal to:

b (m−1)
2 c

∑
i=1

(−1)i+1 ·a2
m,i ·22m−3i.

Now we consider for how many pairs the algorithm executes more than three
iterations. This is true if and only if:

q3 = (p2∧q2) « 1 =

=
(
((p0⊗q0)⊗ ((p0∧q0) « 1))∧ ((p0⊗q0)∧ ((p0∧q0) « 1)) « 1

)
« 1 6= 0.

(11)

Similarly as in the previous case, the condition (11) is fulfilled if for pair (p,q)
exists index i such that:

(p⊗q)i = ((p∧q) « 1)i = 1 (12)

and
(p⊗q)i+1⊗ ((p∧q) « 1)i+1 = 1 (13)

and
(p⊗q)i+2⊗ ((p∧q) « 1)i+2 = 1. (14)

If there is at least one such fixed index i, then, because we made already three
shifts to the left, we can select it from indices {0,1, . . . ,m− 4}, so we can choose
i in m− 3 ways. We can fill pairs of bits (pi+1,qi+1) and (pi+2,qi+2) in 2 · 2 ways,
the remaining m− 3 bits of p and m− 3 bits of q we can fill in all possible ways,
so there is (m− 3) · (2m−3)2 · 22 pairs p, q satisfying the conditions (12), (13) and

103

Katarzyna Woronowicz

(14) for which there exists at least one such index i. Now we define sequence a3
m,k

analogously to the sequence (10).
If we choose sets of k indices for pair p[m−2,...,0], q[m−2,...,0], k≤ b (m−1)

3 c, then all
of these sets of indices can be chosen for pair p, q. We should join all sets containing
index m− 1 to the selected family of sets. Since the choice of index i causes that
indices i+1 and i+2 cannot be selected, we should consider all k−1-elements sets
of indices for pair p[m−4,...,0], q[m−4,...,0]. We obtain the sequence defined as follows:{

a3
m,k = m−3 , k = 1,m≥ 4,

a3
m,k = a3

m−1,k +a3
m−3,k−1 , k > 1,m≥ 4.

(15)

The number of pairs for which conditions (12), (13) and (14) are satisfied is
equal to:

b (m−1)
3 c

∑
i=1

(−1)i+1 ·a3
m,i ·22m−4i.

Now we define the general formula for the number of pairs, for which algo-
rithm (1) executes more than n iterations. The necessary and sufficient condition, by
lemma (3) is that qn 6= 0. We count how many pairs satisfy this condition. First, we
define a sequence an

m,k. After the n-th iteration algorithm executed n shifts to the left
by one position. The choice of index i causes that pi+1⊗ qi+1 = 1, pi+2⊗ qi+2 =
1, . . . , pi+(n−1)⊗ qi+(n−1) = 1. The remaining bits of p, q we can fill in all possible
ways. The recursive formula for the general case is defined as follows:{

an
m,k = m−n , k = 1,m≥ n+1,

an
m,k = an

m−1,k +an
m−n,k−1 , k > 1,m≥ n+1.

(16)

Theorem 2. An explicit formula for the term an
m,k is given as follows:

an
m,k =

(m−((n−1)·k+1))·(m−((n−1)·k+2))·...·(m−n·k)
k! =

=
(m−((n−1)·k+1)

k

) (17)

Proof. We know that:
an

m,k = an
m−1,k +an

m−n,k−1.

We can use the formula (17) for terms an
m−1,k and an

m−n,k−1:

an
m−1,k =

(m−1−((n−1)·k+1))·(m−1−((n−1)·k+2))·...·(m−1−n·k)
k!

104

Algorithm of adding the m-bit numbers

and

an
m−n,k−1 =

(m−n−((n−1)·(k−1)+1))·(m−n−((n−1)·(k−1)+2))·...·(m−n−n·(k−1))
(k−1)! .

Note that:

m−1− ((n−1) · k+1) = m−n− ((n−1) · (k−1)+1),

m−1− ((n−1) · k+2) = m−n− ((n−1) · (k−1)+2),

. . .

m−1− ((n−1) · k+ k−1) = m−n− (n · (k−1)).

Thus:

an
m,k = an

m−1,k +an
m−n,k−1 =

=
(m−1−((n−1)·k+1))·(m−1−((n−1)·k+2))·...·(m−1−n·k)

k! +

+
(m−n−((n−1)·(k−1)+1))·(m−n−((n−1)·(k−1)+2))·...·(m−n−n·(k−1))

(k−1)! =

=

(
(m−1−((n−1)·k+1))·(m−1−((n−1)·k+2))·...·(m−1−((n−1)·k+k−1))

)
·
(

m−1−n·k+k

)
k! =

=

(
(m−((n−1)·k+2))·(m−((n−1)·k+3))·...·(m−((n−1)·k+k))

)
·
(

m−((n−1)·k+1)

)
k! =

=
(m−((n−1)·k+1))·(m−((n−1)·k+2))·...·(m−n·k)

k! =

=
(m−((n−1)·k+1)

k

)
.

�

Therefore, the general formula for computing the number of pairs (p,q) for
which the algorithm (1) executes more than n iterations is given as follows:

b (m−1)
n c

∑
i=1

(−1)i+1 ·an
m,i ·22m−(n+1)·i. (18)

Denote the sum from (18) as An,m. Let A0,m = 2m · (2m−1) and, for the formali-
ties, let A−1,m = 22m. Then the average number of the algorithm iterations is described
by the formula:

Iavg(m) =
1

22m ·
m

∑
i=0

(Ai−1,m−Ai,m) · i =
1

22m ·
m−1

∑
i=0

Ai,m−m ·Am,m, (19)

105

Katarzyna Woronowicz

and, because Am,m = 0, we obtain:

Iavg(m) =
1

22m ·
m−1

∑
i=0

Ai,m. (20)

The average time complexity of the algorithm is equal to:

Tavg(m) =
3

22m ·
m−1

∑
i=0

Ai,m. (21)

3.2 Pessimistic time complexity

The number of pairs (p,q), for which the algorithm (1) executes more than m− 1
iterations is equal to Am,m−1. In the pessimistic case the algorithm executes m iter-
ations, so there are Am,m−1 = 2m such pairs (p,q). Therefore pessimistic data, for
which algorithm executes 3 ·m elementary operations are 1

2m of possible data.

4. Experiments

Up to now we have focused on the average number of iterations of the algorithm,
necessary for calculating the sum of the two numbers. We not yet managed to find
a compact form of the function, which estimates the average time complexity of the
algorithm. The average number of iterations and average time complexity, presented
in the Table (1), are calculated by formulas (20) and (21) respectively.

For a few selected cases we compared the calculated results with the average
complexity obtained by inserting a counter into the code of implemented algorithm
and counting complexity by executing the algorithm for all possible pairs of numbers.
The results are consistent. In the tests for the m-bit sequences we received average
numbers of iterations presented in the Table (1). The results obtained show that, for
the tested cases, the average number of iterations of the algorithm is close to the
square root of m, and for m bigger than 20 does not exceed the square root of m.

In future studies we plan to determine the compact function expressing the aver-
age number of algorithm iterations depending on the size of input data. Another issue
that we intend to explore is the exact time complexity of the algorithm, understood
as the average number of logical operations executed on the individual bits of the
input, instead, as in this paper, on the sequences of bits. In the calculations we will
take into account the fact that, depending on the structure of the input numbers, in
the second and successive iterations logical operations can be executed on sequences
of the changeable length. Making such analysis will allow us to compare the time
complexity of the proposed algorithm with the complexity of the classical algorithm.

106

Algorithm of adding the m-bit numbers

Table 1. Average time complexity.

m Average number of iterations Average time complexity
3 1,4375 4,3125
4 1,82812 5,48438
5 2,16797 6,50391
6 2,46582 7,39746
7 2,72632 8,17896
8 2,95636 8,86908
9 3,16039 9,48116
10 3,34288 10,02865
11 3,50719 10,52158
12 3,65619 10,96857
13 3,79216 11,37647
14 3,91700 11,75099
15 4,03225 12,09674
16 4,13919 12,41756
17 4,23887 12,71662
18 4,33219 12,99657
19 4,41987 13,25961
20 4,50255 13,50764
25 4,85694 14,57081
30 5,14105 15,42316
35 5,37821 16,13464
40 5,58179 16,74536
45 5,76012 17,28036
50 5,91879 17,75637
55 6,06171 18,18512
60 6,19172 18,57515
65 6,31096 18,93289
70 6,42110 19,26330
75 6,52342 19,57025
80 6,61895 19,85686
85 6,70856 20,12567
90 6,79292 20,37876
95 6,87262 20,61786

100 6,94815 20,84444
200 7,96248 23,88744
300 8,55218 25,65653
400 8,96957 26,90870
500 9,29291 27,87873

107

Katarzyna Woronowicz

5. Acknowledgment

The author is grateful to Professor Czesław Bagiński and Professor Wiktor Dańko for
their help during the preparation of the paper, insightful observations and useful tips.

References

[1] D. E. Knuth. The art of computer programming, Vol. 2 Seminumerical Algo-
rithms. Reading, Massachusetts: Addison-Wesley.

[2] A. A. Karatsuba. The complexity of computations. Proceedings of the Steklov
Institute of Mathematics, 1995.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms. MIT
Press and McGraw-Hill, 1990.

ALGORYTM DODAJĄCY DWIE M-BITOWE LICZBY

Streszczenie W klasycznym algorytmie dodawania dwóch m-bitowych liczb z przeniesie-
niami dodajemy po kolei bity na poszczególnych pozycjach binarnych reprezentacji danych
wejściowych. Jeśli przyjmiemy za iterację algorytmu wyznaczenie wartości pojedynczego
bitu sumy, to dla każdej pary m-bitowych liczb algorytm wykonuje m iteracji. W niniejszej
pracy proponujemy rekurencyjny algorytm dodawania dwóch liczb, który w pojednynczej
iteracji wykonuje trzy operacje logiczne, a liczba iteracji wynosi od 0 do m.

Słowa kluczowe: dodawanie, dodanie dwóch liczb

108

