Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zn1–xNixO aerogel nanopowders with nickel concentration in the range of 0.05 ≤ x ≤ 0.25, were synthesized by the sol-gel processing technique and post-annealed in air at 500 ˚C. Structural, vibrational, thermal and magnetic properties of the as-prepared and annealed Zn1–xNixO powdered samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering, thermal gravimetric analysis (TGA) and electron paramagnetic resonance (EPR) spectroscopy. In addition to the ZnNiO phase, XRD analysis revealed the formation of a secondary NiO phase when the Ni content was greater than or equal to 10 %. The TEM images confirm that the particle size is in the range of 20 nm to 40 nm, in accordance with XRD results, and the particles are well dispersed. Raman scattering measurements confirm the wurtzite structure of the synthesized Zn1–xNixO nanopowders and show that intrinsic host-lattice defects are activated when Ni2+ ions are substituted to the Zn sites. Room temperature ferromagnetic order was observed in all of the samples and was strongly dependent on the Ni content and thermal annealing. These results indicate that the observed room temperature ferromagnetism in ZnNiO may be attributed to the substitutional incorporation of Ni at Zn sites.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
454--462
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- Department of Physics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de recherche Spectroscopie Raman UR13ES31, 2092, Tunis, Tunisia
autor
- Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, Riyadh 11623, Saudi Arabia
- Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l’Environnement, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès, Tunisia
Bibliografia
- [1] WOLF S.A., AWSCHALOM D.D., BUHRMAN R.A., DAUGHTON J.M., MOLNAR VON S., ROUKES M.L., CHTCHELKANOVA A.Y., TREGER D.M., Science, 294 (2001), 1488.
- [2] RODE K., ANANE A., MATTANA R., CONTOUR J.-P., DURAND O., LE BOURGEOIS R., J. Appl. Phys., 93 (2003), 7676.
- [3] PRELLIER W., FOUCHET A., MERCEY B., SIMON C., RAVEAU B., Appl. Phys. Lett., 82 (2003), 3490.
- [4] RADOVANOVIC P.V., GAMELIN D.R., Phys. Rev. Lett., 91 (2003), 157202.
- [5] KITTILSTVED K.R., GAMELIN D.R., J. Am. Chem. Soc., 127 (2005), 5292.
- [6] SONG C., PAN S.N., LIU X.J., LI X. W., ZENG F., YAN W. S., HE B., PAN F., J. Phys.-Condens. Mat., 19 (2007), 176229.
- [7] PAN F., SONG C., LIU X., YANG Y., ZENG F., Mat. Sci. Eng. R, 62 (2008), 1.
- [8] ANDO K., SAITO H., JIN Z., FUKUMURA T., KAWASAKI M., MATSUMOTO Y., KOINUMA H., Appl. Phys. Lett., 78 (2001), 2700.
- [9] NORTON D.P., PEARTON S.J., HEBARD A.F., THEORDOROPOULOU N., BOATNER L.A., WILSON R. G., Appl. Phys. Lett., 82 (2003), 239.
- [10] JIN Z., FUKUMURA T., KAWASAKI M., ANDO K., SAITO H., SEKIGUCHI T., YOO Y.Z., MURAKAMI M., MATSUMOTO Y., HASEGAWA T., KOINUMA H., Appl. Phys. Lett., 78 (2001), 3824.
- [11] JANISCH R., GOPAL P., SPALDIN N.A., J. Phys.-Condens. Mat., 17 (2005), R657.
- [12] SESHADRI R., Curr. Opin. Solid State Mater. Sci., 9 (2005), 1.
- [13] LIU C., YUN F., MORKOC H., J. Mater. Sci.-Mater. El., 16 (2005), 555.
- [14] AZZONI C.B., PALEARI A., MASSAROTTI V., CAPSONI D., J. Phys.-Condens. Mat., 8 (1996), 7339.
- [15] SALAH R., DJAJA N.F., PRAKOSO S. P., J. Alloy. Compd., 546 (2013), 48.
- [16] ROBERTS B.K., PAKHOMOV A.B., SHUTTHANANDAN V.S., KRISHNAN K.M., J. Appl. Phys., 97 (2005), D310.
- [17] CHENG C.W., XU G.Y., ZHANG H.Q., LUO Y., Mater. Lett., 62 (2008), 1617.
- [18] SAYARI A., MIR EL L., BARDELEBEN VON H.J., Eur. Phys.-J. Appl. Phys., 67 (2014), 10401.
- [19] WU D.W., YANG M., HUANG Z.B., YIN G.F., LIAOX.M., KANG Y.Q., CHEN X.F., WANG H., J. Colloid Interf. Sci., 330 (2009), 380.
- [20] SCHWARTZ D.A., KITTILSTVED K.R., GAMELIN D.R., Appl. Phys. Lett., 85 (2004), 1395.
- [21] MIR EL L., GHRIBI F., HAJIRI M., AYADI BEN Z., DJESSAS K., CUBUKCU M., BARDELEBEN VON H.J., Thin Solid Films, 519 (2011), 5787.
- [22] MIR EL L., AYADI BEN Z., RAHMOUNI H., GHOUL EL J., DJESSAS K., BARDELEBEN VON H.J., Thin Solid Films, 517 (2009), 6007.
- [23] ZHANG H., YANG D., MA X., JI Y., XU J., QUE D., Nanotechnology, 15 (2004), 622.
- [24] SAYARI A., MIR EL L., Kona Powder Part. J., 32 (2015), 154.
- [25] MIR EL L., BARDELEBEN VON H.J., SAADOUN M., MAHMOUD BEN A., CANTIN J.-L., Mater. Res. Soc. Symp. Proc., 957 (2007), K10-17.
- [26] MIR EL L., MAHMOUD BEN A., BARDELEBEN VON H.J., CANTIN J.-L., Mater. Res. Soc. Symp. Proc., 957 (2007) K10-16.
- [27] LI W.J., SHI E.W., YIN Z.W., J. Mater. Sci. Lett., 20 (2001), 1381.
- [28] LIU B., ZENG H.C., J. Am. Chem. Soc., 125 (2003), 4430.
- [29] SHEN G.Z., CHO J.H., YOO J.K., YI G.C., LEE C.J., J. Phys. Chem. B, 109 (2005), 5491.
- [30] MOHAPATRA J., MISHRA D.K., KAMILLA S.K., MEDICHERLA V.R.R., PHASE D.M., BERMA V., SINGH S.K., Phys. Status Solidi B, 248 (2011), 1352.
- [31] SHARMA P.K., DUTTA R.K., PANDEY A.C., J. Magn. Magn. Mater., 321 (2009), 3457.
- [32] CULLITY B.D., STOCK S.R., Elements of X-ray Diffraction, Prentice Hall, New York, 2001.
- [33] STRACHOWSKI T., GRZANKA E., LOJKOWSKI W., PRESZ A., GODLEWSKI M., YATSUNENKO S., MATYSIAK H., PITICESCU R.R., MONTY C.J., J. Appl. Phys., 102 (2007), 073513.
- [34] SWANSON H.E., FUYAT R.K., Natl. Bur. Stand. Circ., 2 (1953), 25.
- [35] CALLEJA J.M., CARDONA M., Phys. Rev. B, 16 (1977), 3753.
- [36] DAMEN T.C., PORTO S.P.S., TELL B., Phys. Rev., 142 (1966), 570.
- [37] SAYARI A., MARZOUKI A., LUSSON A., OUESLATI M., SALLET V., Thin Solid Films, 518 (2010), 6870.
- [38] CUSCO R., ALARCON-LLADO E., IBANEZ J., ARTUS L., JIMENEZ J., WANG B., CALLAHAN M.J., Phys. Rev. B, 75 (2007), 165202.
- [39] CHEN Z.Q., KAWASUSO A., XU Y., NARAMOTO H., YUAN X. L., SEKIGUCHI T., SUZUKI R., OHDAIRA T., Phys. Rev. B, 71 (2005), 115213.
- [40] ULMANE N.M., KUZMIN A., SILDOS I., PÄRS M., Cent. Eur. J. Phys., 9 (2011), 1096.
- [41] KASCHNER A., HABOECK U., STRASSBURG M., KACZMARCZYK G., HOFFMANN A., THOMSEN C., ZEUNER A., ALVES H. R., HOFMANN D.M., MEYER B.K., Appl. Phys. Lett., 80 (2002), 1909.
- [42] SATI P., PASHCHENKO V., STEPANOV A., Low Temp. Phys.+, 33 (2007), 1222.
- [43] SRINIVAS K., MANJUNATH RAO S., VENUGOPAL REDDY P., J. Nanopart. Res., 13 (2011), 817.
- [44] JEDRECY N., BARDELEBEN VON H.J., ZHENG Y., CANTIN J.L., Phys. Rev. B, 69 (2004), 041308.
- [45] LIU X., LIN F., SUN L., CHENG W., MA X., SHI W., Appl. Phys. Lett., 88 (2006), 062508.
- [46] SHARMA V.K., BAIKER A., J. Chem. Phys., 75 (1981), 5596.
- [47] KRITHIGA R., CHANDRASEKARAN G., J. Mater. Sci.-Mater. El., 22 (2011), 1229.
- [48] LAIHO R., VLASENKO L.S., VLASENKO M.P., J. Appl. Phys., 103 (2008), 123709.
- [49] SCHNEIDER J.J., HOFFMANN R.C., ENSGTLER J., KLYSZCZ A., ERDEM E., JAKES P., EICHEL R.-A., Chem. Mater., 22 (2010), 2203.
- [50] KAPPERS L.A., GILLIAM O.R., EVANS S.M., HALLIBURTON L.E., GILES N.C., Nucl. Instrum. Meth. B, 266 (2008), 2953.
- [51] HOFMANN D.M., ZHOU H., PFISTERER D.R., ALVES H., MEYER B.K., BARANOV P., ROMANOV N., MELLO DE D.C., MEIJERING A., ORINSKII S., BLOK H., SCHMIDT J., Phys. Status Solidi C, 1 (2004), 908.
- [52] LI D., LEUNG Y.H., DJURIŠIC A.B., LIU Z.T., XIE M.H., SHI S.L., XU S.J., CHAN W.K., Appl. Phys. Lett., 85 (2004), 1601.
- [53] YILMAZ S., MC GLYNN E., BACAKSIZ E., CULLEN J., CHELLAPPAN R.K., Chem. Phys. Lett., 525 (2012), 72.
- [54] KITTILSTVED K.R., NORBERG N.S., GAMELIN D.R., Phys. Rev. Lett., 94 (2005), 147209.
- [55] KITTLSTVED K.R., LIU W.K., GAMELIN D.R., Nat. Mater., 5 (2006), 291.
- [56] DIETL T., OHNO H., MATSUKURA F., CIBERT J., FERRAND D., Science, 287 (2000), 1019.
- [57] DIETL T., Semicond. Sci. Tech., 17 (2002), 377.
- [58] SATO K., KATAYAMA-YOSHIDA H., Semicond. Sci. Tech., 17 (2002), 367.
- [59] SATO K., KATAYAMA-YOSHIDA H., Physica E, 10 (2001), 251.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aaaaa0f-a479-4436-b704-867b727a8a76