PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Copper on the Crystallization Process, Microstructure and Selected Properties of CGI

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the research on the effect of copper on the crystallization process, microstructure and selected properties of the compacted graphite iron. Compacted graphite in cast iron was obtained using Inmold process. The study involved the cast iron containing copper at a concentration up to approximately 4%. The effect of copper on the temperature of the eutectic crystallization as well as the temperature of start and finish of the austenite transformation was given. It has been shown that copper increases the maximum temperature of the eutectic transformation approximately by 5 oC per 1% Cu, and the temperature of the this transformation finish approximately by 8 o C per 1% Cu. This element decreases the temperature of the austenite transformation start approximately by 5 oC per 1% Cu, and the finish of this transformation approximately by 6oC per 1% Cu. It was found that in the microstructure of the compacted graphite iron containing about 3.8% Cu, there are still ferrite precipitations near the compacted graphite. The effect of copper on the hardness of cast iron and the pearlite microhardness was given. This stems from the high propensity to direct ferritization of this type of cast iron. It has been shown copper increases the hardness of compacted graphite iron both due to its pearlite forming action as well as because of the increase in the pearlite microhardness (up to approx. 3% Cu). The conducted studies have shown copper increases the hardness of the compacted graphite iron approximately by 35 HB per 1% Cu.
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr.15 poz., il., rys., tab., wykr.
Twórcy
autor
  • Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
autor
  • Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
  • Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
Bibliografia
  • [1] Pietrowski, S. (2000). Compendium of knowledge about vermicular cast iron. Solidification of Metals and Alloys. 2(44), 279-292. (in Polish).
  • [2] Guzik, E. (2010). Structure and mechanical properties as well as application of high quality vermicular cast iron. Archives of Foundry Engineering. 10(3), 95-100.
  • [3] Guzik, E. & Dzik, S. (2009). Structure and mechanical properties of vermicular cast iron in cylinder head casting. Archives of Foundry Engineering. 9(1), 175-180.
  • [4] Górny, M., Kawalec, M. & Sikora, G. (2014). Effect of Cooling Rate on Microstructure of Thin-Walled Vermicular Graphite Iron Castings. Archives of Foundry Engineering. 14(spec.1), 139-142.
  • [5] Górny, M. & Kawalec, M. (2013). Role of Titanium in Thin Wall Vermicular Graphite Iron Castings Production. Archives of Foundry Engineering. 13(2), 25-28.
  • [6] Laneri, K., Bruna, P. & Crespo, D. Microstructural characterization and kinetics modelling of vermicular cast irons. Retrieved May, 25. 2015 from http://arxiv.org/ftp/cond-mat/papers/0606/0606031.pdf.
  • [7] Guzik, E. & Kleingartner, T. (2009). A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix. Archives of Foundry Engineering. 9(3), 55-60.
  • [8] Soiński, M.S. & Mierzwa, P. (2011). Effectiveness of cast iron vermicularization including ‘conditioning’ of the alloy. Archives of Foundry Engineering. 11(2), 133-138.
  • [9] Andrsova, Z. & Volesky, L. (2012). The Potential of Isothermally Hardened Iron with Vermicular Graphite. COMAT 2012. 21.-22. 11. 2012. Plzeň, Czech Republic, EU. Retrieved May, 25. 2015 from http://www.comat.cz/files/-proceedings/11/reports/1060.pdf.
  • [10] García-Hinojosa, J.A., Amaro A.M., Márquez, V.J. & Ramírez-Argaez, M.A. (2007). Manufacturing of Carbide Austempered Vermicular Iron. METAL 2007. 22. – 24. 5. 2007 Hradec nad Moravicí. Retrieved May, 25. 2015 from http://konsyst.tanger.cz/files/proceedings/metal_07/Lists/Papers/120.pdf.
  • [11] Pytel, A. & Gazda, A. (2014). Evaluation of selected properties in austempered vermicular cast iron (AVCI). Transactions of Foundry Research Institute. LIV(4), 23-31. DOI: 10.7356/iod.2014.18
  • [12] Soiński, M.S. & Jakubus, A. (2014). Initial Assessment of Abrasive Wear Resistance of Austempered Cast Iron with Vermicular Graphite. Archives of Metallurgy and Materials. 59(3), 1073-1076. DOI: 10.2478/amm-2014-0183.
  • [13] Guesser, W.L., Masiero, I., Melleras, E. & Cabezas, C.S. (2005). Thermal Conductivity of Gray Iron and Compacted Graphite Iron Used for Cylinder Heads. Revista Matéria. 10(2), 265- 272.
  • [14] König, M. & Wessén, M. (2009). The influence of copper on microstructure and mechanical properties of compacted graphite iron. International Journal of Cast Metals Research. 22(1-4), 164-167.
  • [15] Kosowski, A. & Podrzucki, C. (1981). Alloyed cast iron. (2nd ed.). Cracow. University of Science and Technology.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa8ef56-b194-4c71-ae55-f446ec3564b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.