PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropic Interfacial Adhesion between Fluoropolymers and RDX Single Crystal Faces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interfacial interactions have an important influence on the properties of energetic materials. The anisotropy of interfacial adhesive strength between various 1,3,5-trinitro-1,3,5-triazinane (RDX) single crystal faces and a typical binder was studied in this work by experimental and theoretical investigations. An RDX single crystal was prepared and processed into three kinds of orientated crystal faces, including (002), (020) and (210). These crystal slices were used as substrates, and fluorinated polymer F2314 was used as a binder. The surfaces of the RDX slices were analyzed by X-ray photoelectron spectroscopy (XPS) and an atomic force microscope (AFM). The work of adhesion was obtained from direct tensile tests, using designed samples of the sandwich structure of RDX-F2314-RDX, with various RDX single crystal surfaces. The polarity component of the surface energy and the work of adhesion was obtained by Young’s equation and the Fowkes theory, based on surface contact angle tests. The results in this work indicated the anisotropy of the interfacial adhesion of F2314 on various RDX crystal faces.
Rocznik
Strony
409--423
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang , 621900, China
Bibliografia
  • [1] Dobratz, B.M.; Crawford, P.C. LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants. US 1976; UCRL-52997-Chg.2.
  • [2] Small IV, W.; Glascoe, E.A.; Overturf, G.E. Measurement of Moisture Outgassing of the Plastic-Bonded TATB Explosive LX-17. Thermochim. Acta 2012, 545: 90-95l DOI: 10.1016/j.tca.2012.06.033.
  • [3] Mirkarimi, P.B.; Moua, Y.; Pease, S.T.; Sain, J.D. Fracture Toughness and Crack Propagation in LX-17 and PBX 9502 Insensitive High Explosives. Int. J. Solids Struct. 2022, 250: 9-12; DOI: 10.1016/j.ijsolstr.2022.111721.
  • [4] Chen, P.; Huang, F.; Ding, Y. Microstructure, Deformation and Failure of Polymer Bonded Explosives. J. Mater. Sci. 2007, 42: 5272-5280; DOI 10.1007/s10853-006-0387-y.
  • [5] Yang, Z.; Lin, C.; Gong, F.; Zeng, C.; Zhang, J.; Huang, F. Effects of Crystal Quality and Morphology on the Mechanical Performance of LLM-105 Based PBXs. Propellants Explos. Pyrotech. 2019, 44(10): 1219-1225; DOI: 10.1002/prep.201900106.
  • [6] Li, Y.; Wu, P.; Hua, C.; Wang, J.; Huang, B.; Chen, J.; Qiao, Z.; Yang, G. Determination of the Mechanical and Thermal Properties, and Impact Sensitivity of Pressed HMX-based PBX. Cent. Eur. J. Energ. Mater. 2019, 16(2): 299-315; DOI: 10.22211/cejem/109717.
  • [7] Liu, J.-H.; Yang, Z.-J.; Liu, S.-J.; Zhang, J.-H.; Liu, Y.-G. Effects of Fluoropolymer Binders on the Mechanical Properties of TATB-based PBX. Propellants Explos. Pyrotech. 2018, 43(7): 664-670; DOI: 10.1002/prep.201700295.
  • [8] Liu, R.; Han, Y.; Li, M.; Jiang, Z.; He, S. Shock Ignition and Growth of HMXbased PBXs under Different Temperature Conditions. Cent. Eur. J. Energ. Mater. 2019, 16(1): 21-32; DOI: 10.22211/cejem/104390.
  • [9] Hobbs, M.L.; Kaneshige, M.J. Ignition Experiments and Models of a Plastic Bonded Explosive (PBX 9502). J. Chem. Phys. 2014; 140, paper 124203; DOI: 10.1063/1.4869351.
  • [10] Li, T.; Hua, C.; Li, Q. Shock Sensitivity of Pressed RDX-based Plastic Bonded Explosives Under Short-duration and High-Pressure Impact Tests. Propellants Explos. Pyrotech. 2013, 38: 770-774.
  • [11] He, G.; Yang, Z.; Pan, L.; Zhang, J.; Liu, S.; Yan, Q.-L. Bioinspired Interfacial Reinforcement of Polymer Based Energetic Composites with a High Loading of Solid Explosive Crystals. J. Mater. Chem. A 2017, 5(26): 13499-13510; DOI: 10.1039/C7TA03424E.
  • [12] Gholamian, F.; Ansari, M.; Abdullah, M.; Bataghva, F.; Ghariban-Lavasani S. Intermolecular Interaction of a Neutral Polymeric Bonding Agent Containing N-Vinylpyrrolidone Units with Ammonium Perchlorate and Keto-RDX. Chin. J. Polym. Sci. 2013, 31(10): 1372-1381; DOI: 10.1007/s10118-013-1327-3.
  • [13] Lin, C.; Huang, B.; Gong, F.; Yang, Z.; Liu, J.; Zhang, J.; Zeng, C.; Li, Y.; Li, J.; Guo, S. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties. ACS Appl. Mater. Interfaces 2019, 11(33): 30341-30351; DOI: 10.1021/acsami.9b10506.
  • [14] Zhao, Y.; Xie, W.; Qi, X.; Liu, Y.; Tang, Q.; Song, K.; Zhang, W. Comparison of the Interfacial Bonding Interaction Between GAP Matrix and Ionic/non-Ionic Explosive: Computation Simulation and Experimental Study. Appl. Surf. Sci. 2019, 497(1): 143813; DOI: 10.1016/j.apsusc.2019.143813.
  • [15] Jaidann, M.; Lussier, L.-S.; Bouamoul, A.; Abou-Rachid, H.; Brisson, J. Effects of Interface Interactions on Mechanical Properties in RDX-Based PBXs HTPBDOA: Molecular Dynamics Simulations. Proc. 9th Int. Conf. Computational Science – ICCS 2009, Part II, (Allen, G.; Nabrzyski, J.; Seidel, E.; van Albada, G.D.; Dongarra, J.; Sloot, P.M.A., Eds.) Springer-Verlag, Berlin/Heidelberg/New York, 2009, 131-140; ISBN-13: 978-3-642-01972-2.
  • [16] Yeager, J.D.; Dattelbaum, A.M.; Orler, E.B.; Baht, D.F.; Dattelbaum, D.M. Adhesive Properties of Some Fluoropolymer Binders with the Insensitive Explosive 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). J. Colloid Interface Sci. 2010, 352(2): 535-541; DOI: 10.1016/j.jcis.2010.08.063.
  • [17] Du, M.-N.; Luo, Y. Effect of Particle Size and Surface Free Energy of RDX on the Mechanical Properties of HTPB Propellant. Chin. J. Energ. Mater. 2008, 16(4): 441-445.
  • [18] Wang, D.; Shu, Y.-J.; Li, M.; Chen, T.-N.; Kang, B.; Song, M.-X. Fracture Toughness of RDX and HMX Single-crystal by Indentation. (in Chinese) Chin. J. Explos. Propell. 2011, 34(1): 28-31.
  • [19] Li, M.; Tan, W.-J.; Kang, B.; Xy, R.-J.; Tang, W. The Elastic Modulus of β-HMX Crystals Determined by Nanoindentation. Propellants Explos. Pyrotech. 2010, 35(4): 379-383; DOI: 10.1002/prep.201000018.
  • [20] Zhou, X.; Xu, R.; Huang, M. Characterization of Dislocation in RDX Single Crystal by Rocking Curve. Proc. 43rd Int. Annu. Conf. ICT, Fraunhofer, Germany, 2012.
  • [21] Williamson, D.M.; Palmer, S.J.P.; Proud, W.G. Thermodynamic Work of Adhesion Between HMX and a UK PBX Binder System. Shock Compression of Condensed Matter 2009: 478-481.
  • [22] Li, H.; Zhou, X.; Xu, R. Growth and Machining of RDX Single Crystal, Chin. J. Energ. Mater. 2011, 19(6): 745-746.
  • [23] Zhou, X.; Li, H.; Liu, J. Precision Machining of RDX Single Crystal, Chin. J. Energ. Mater. 2013, 21(5): 693-695.
  • [24] Paints and Varnishes ‒ Pull-off Test for Adhesion. Standard GB-T5210-2006, 2006.
  • [25] He, G.; Liu, J.; Gong, F. Bioinspired Mechanical and Thermal Conductivity Reinforcement of Highly Explosive-filled Polymer Composites. Compos. Part A. 2018, 107: 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa876cc-7aec-4866-94b1-f58998b754e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.