PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Condensation wave identification in moist air transonic flows through nozzles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper identifies the location of water vapour spontaneous condensation during air expansion in convergent-divergent nozzles. The comprehensive analysis proposed herein includes an analytical solution together with experimental and numerical investigations. Numerical calculations are performed using an in-house computational fluid dynamics code based on the solution of Reynolds averaged Navier-Stokes equations supplemented with additional partial differential equations modelling the condensation process of water vapour contained in atmospheric air. Experiments were carried out using an in-house facility adapted for measurements of atmospheric air transonic flows.
Słowa kluczowe
Rocznik
Tom
Strony
67--77
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Guha A.: A unified theory of aerodynamic and condensation shock waves in vapour-droplet flows with or without a carrier gas. Phys. Fluids 6(1994), 5, 1893–1914.
  • [2] Puzyrewski R.: Water Vapour Condensation in the de Laval Nozzle. PWN, Warszawa- Poznań 1969 (in Polish).
  • [3] Puzyrewski R., Król T.: Numerical analysis of Hertz-Knudsen model of condensation. Transactions IFFM 70-72(1976), 285–307.
  • [4] Schnerr G.H., Dohrmann U.: Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation. AIAA J. 28(1990), 1187–1193.
  • [5] Schnerr G.H., Mundinger G.: Similarity, drag, and lift in transonic flow with given internal heat addition. Euro. J. Mech., B/Fluids 12(1993), 5, 597–611.
  • [6] Schnerr, G.H., Dohrmann U.: Drag and lift in non-adiabatic transonic flow. AIAA J. 32(1994), 101–107.
  • [7] Matsuo S., Yokoo K., Nagao J., Nishiyama Y., Setoguchi T., Dong Kim H., Yu S.: Numerical study on transonic flow with local occurrence of non-equilibrium condensation. Open Journal of Fluid Dynamics, 3(2013), 42–47, http://dx.doi.org/10.4236/ojfd.2013.32A007.
  • [8] Frenkel J.: Kinetic Theory of Liquids. Dover, New York 1955.
  • [9] Knudsen M.: Annalen der Physik. 47(1915), 697–708.
  • [10] Dykas S., Majkut M., Strozik M. and Smołka K.: Experimental study of condensing steam flow in nozzles and linear blade cascade. Int. J. Heat Mass Tran. 80(2015), 50–57.
  • [11] Doerffer P., Dykas S.: Numerical analysis of shock induced separation delay by air humidity. J. Therm. Sci. 14(2005), 2, 120–125.
  • [12] Dykas S., Wróblewski W.: Two-fluid model for prediction of wet steam transonic flow. Int. J. Heat Mass Tran. 60(2013), 88–94.
  • [13] Pruppacher H.R., Klett J.D.: Microphysics of Clouds and Precipitation. D. Reidel Publ. Company, 1980.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa49e24-8da6-4e16-8d8a-defab377af6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.