PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the northern Red Sea's oceanic features with remote sensing data and outputs from a global circulation model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sea surface temperature (SST) and surface wind (SW) are considered the most important components in air–sea interactions. This study examines the relationships between SST, SW and various oceanic variables in the northern Red Sea (NRS) during the period of 2000–2014. The current study is the first attempt to identify the SST fronts and their relationship with the dominant circulation patterns. SST fronts are mapped using the Cayula and Cornillon algorithms. The analysis is performed with available remote sensing and reanalyzed data together with 1/12° HYbrid Coordinate Ocean Model (HYCOM) outputs. Seasonal-trend decomposition procedure based on loess (STL) is applied for trend analysis, and Principal Component Analysis (PCA) is run for the atmospheric parameters. The SST, SW speed and Chlorophyll-a (Chl-a) changes show insignificant trends during the period of 2000–2014. Meridional SST fronts are more significant during the month of January, and fronts that are perpendicular to the sea's axis occur from February to May. Distinct monthly and spatial variations are present in all the examined parameters, although these variations are less pronounced for the wind direction. The SST is mainly controlled by the air temperature and sea level pressure. Significant correlations exist between the SST and the studied parameters (alongshore wind stress rather than the cross-shore wind stress, surface circulation, MLD, and Chl-a). Surface winds generally flow southeastward parallel to the Red Sea's axis explaining that alongshore wind stress is highly correlated with the studied parameters.
Czasopismo
Rocznik
Strony
213--237
Opis fizyczny
Bibliogr. 97 poz., mapy, tab., wykr.
Twórcy
autor
  • Department of Environmental Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt
autor
  • Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Japan
autor
  • Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Japan
  • Department of Water and Water Structures Eng., Faculty of Engineering, Zagazig University, Egypt
  • Department of Environmental Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt
  • McMaster University, Hamilton, Canada
autor
  • Marine Science Department, Suez Canal University, Faculty of Science, Egypt
autor
  • Oceanography Department, Alexandria University, Faculty of Science, Egypt
  • Marine Science Department, Gothenburg University, Sweden
Bibliografia
  • [1] Abdi, H., Williams, L. J., 2010. Principal component analysis. WIREs Comput. Stat. 2 (4), 433-459, http://dx.doi.org/10.1002/wics.101.
  • [2] Abualnaja, Y., Papadopoulos, V. P., Josey, S. A., Hoteit, I., Kontoyiannis, H., Raitsos, D. E., 2015. Impacts of climate modes on air-sea heat exchange in the Red Sea. J. Clim. 28 (7), 2665-2681, http://dx.doi.org/10.1175/JCLI-D-14-00379.1.
  • [3] Acker, J., Leptoukh, G., Shen, S., Zhu, T., Kempler, S., 2008. Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. J. Mar. Syst. 69 (3), 191-204, http://dx.doi.org/10.1016/j.jmarsys.2005.12.006.
  • [4] Al-Horani, F. A., Al-Rousan, S. A., Al-Zibdeh, M., Khalaf, M. A., 2006. The status of coral reefs on the Jordanian coast of the Gulf of Aqaba, Red Sea. Zool. Middle East 38 (1), 99-110, http://dx.doi.org/10.1080/09397140.2006.10638171.
  • [5] Al-Rousan, S., Al-Taani, A. A., Rashdan, M., 2016. Effects of pollution on the geochemical properties of marine sediments across the fringing reef of Aqaba, Red Sea. Mar. Pollut. Bull. 110 (1), 546-554, http://dx.doi.org/10.1016/j.marpolbul.2016.05.038.
  • [6] Barale, V., Gade, M., 2013. Remote Sensing of the African Seas. Springer, 317-337, http://dx.doi.org/10.1007/978-94-017-8008-7.
  • [7] Belkin, I., Cornillon, P., 2003. SST fronts of the Pacific coastal and marginal seas. Pac. Oceanogr. 1 (2), 90-113.
  • [8] Belkin, I. M., Cornillon, P. C., 2007. Fronts in the world ocean's large marine ecosystems. ICES C 500 (130) 21 pp.
  • [9] Belkin, I. M., Cornillon, P., Ullman, D., 2003. Ocean fronts around Alaska from satellite SST data. In: Proceedings of the American Meteorological Society's 7th Conference on the Polar Meteorology and Oceanography and Joint Symposium on High-Latitude Climate Variations. 12-16 May, Hyannis, MA, Paper no 12.7 15 pp.
  • [10] Bentamy, Abderrahim, Croize-Fillon, Denis, 2012. Gridded Surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 33 (6), 1729-1754, http://dx.doi.org/10.1080/01431161.2011.600348.
  • [11] Berman, T., Paldor, N., Brenner, S., 2003. Annual SST cycle in the Eastern Mediterranean, Red Sea and Gulf of Elat. Geophys. Res. Lett. 30 (5), 1261, 4 pp., http://dx.doi.org/10.1029/2002GL015860.
  • [12] Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., Uppala, S., 2009. The ERA-Interim Archive, ERA Report Series. European Centre for Medium Range Weather Forecasts Shinfield Park, UK, 20 pp.
  • [13] Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model. 4 (1), 55-88, http://dx.doi.org/10.1016/S1463-5003(01)00012-9.
  • [14] Blythe, J. N., Silva, C. B., Pineda, J., 2011. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs. ICES J. Mar. Sci. 68, 1827-1832, http://dx.doi.org/10.1093/icesjms/fsr109.
  • [15] Bower, A. S., Farrar, J. T., 2015. Air-sea interaction and horizontal circulation in the Red Sea. In: The Red Sea. Springer Earth System Sciences. Springer-Verlag, Berlin/Heidelberg, 329-342, http://dx.doi.org/10.1007/978-3-662-45201-1_19.
  • [16] Boyer, J. N., Kelble, C. R., Ortner, P. B., Rudnick, D. T., 2009. Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 9 (6), S56-S67, http://dx.doi.org/10.1016/j.ecolind.2008.11.013.
  • [17] Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Zweng, M. M., 2013. World Ocean Database 2013, NOAA Atlas NESDIS 72. National Oceanographic Data Center, Ocean Climate Laboratory, Silver Spring, MD, 209 pp., http://dx.doi.org/10.7289/V5NZ85MT.
  • [18] Brewin, R. J. W., Raitsos, D. E., Pradhan, Y., Hoteit, I., 2013. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence. Remote Sens. Environ. 136, 218-224, http://dx.doi.org/10.1016/j.rse.2013.04.018.
  • [19] Carder, K. L., Chen, F. R., Cannizzaro, J. P., Campbell, J. W., Mitchell, B. G., 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Adv. Sp. Res. 33 (7), 1152-1159, http://dx.doi.org/10.1016/S0273-1177(03)00365-X.
  • [20] Carlson, D. F., Fredj, E., Gildor, H., 2014. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep-Sea Res. Pt. I 84, 1-17, http://dx.doi.org/10.1016/j.dsr.2013.10.004.
  • [21] Casey, K. S., Brandon, T. B., Cornillon, P., Evans, R., 2010. The Past, Present, and Future of the AVHRR Pathfinder SST Program [in:] Oceanography from Space. Springer, Netherlands, 273-287, http://dx.doi.org/10.1007/978-90-481-8681-5_16.
  • [22] Cayula, J.-F., Cornillon, P., 1992. Edge detection algorithm for SST images. J. Atmos. Ocean. Technol. 9 (1), 67-80, http://dx.doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.
  • [23] Chang, R., Rong, Z., Badger, M., Hasager, C. B., Xing, X., Jiang, Y., 2015. Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea. Remote Sens. 7 (1), 467-487, http://dx.doi.org/10.3390/rs70100467.
  • [24] Chu, P. C., 1989. Relationship between thermally forced surface wind and sea surface temperature gradient. Pure Appl. Geophys. 130 (1), 31-45, http://dx.doi.org/10.1007/BF00877735.
  • [25] Clerici, M., Melin, F., Hoepffner, N., 2008. MERSEA-IP Marine Environment and Security for the European Area; Assessment of Global Ocean Colour Products against In-situ Datasets. European Commission, Ispra, 44 pp.
  • [26] Cleveland, R. B., Cleveland, W. S., McRae, J. E., Terpenning, I., 1990. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6 (1), 3-73.
  • [27] Curran, P. J., Dungan, J. L., Gholz, H. L., 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 7 (1-4), 33-48, http://dx.doi.org/10.1093/treephys/7.1-2-3-4.33.
  • [28] De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D., 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res.-Oceans 109 (C12), 20 pp., http://dx.doi.org/10.1029/2004jc002378.
  • [29] Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137 (656), 553-597, http://dx.doi.org/10.1002/qj.828.
  • [30] Ebuchi, N., Graber, H. C., Caruso, M. J., 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Ocean. Technol. 19 (12), 2049-2062, http://dx.doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.
  • [31] Falkowski, P. G., Barber, R. T., Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281 (5374), 200-206.
  • [32] Furby, K. A., Bouwmeester, J., Berumen, M. L., 2013. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32 (2), 505-513, http://dx.doi.org/10.1007/s00338-012-0998-5.
  • [33] Gai, S., Wang, H., Liu, G., Huang, L., Song, X., 2012. Chlorophyll a increase induced by surface winds in the northern South China Sea. Acta Oceanol. Sin. 31 (4), 76-88, http://dx.doi.org/10.1007/s13131-012-0222-z.
  • [34] Genin, A., Lazar, B., Brenner, S., 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo 1995. Nature 377 (6549), 507-510.
  • [35] Giannini, A., Kushnir, Y., Cane, M. A., 2000. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Clim. 13 (2), 297-311.
  • [36] Gons, H. J., Auer, M. T., Effler, S. W., 2008. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 112 (11), 4098-4106, http://dx.doi.org/10.1016/j.rse.2007.06.029.
  • [37] Gregg, W. W., Rousseaux, C. S., 2014. Decadal trends in global pelagic ocean chlorophyll: a new assessment integrating multiple satellites, in situ data, and models. J. Geophys. Res. Oceans 119 (9), 5921-5933, http://dx.doi.org/10.1002/2014JC010158.
  • [38] Halliwell, G., 2004a. Diagnosis of Kinematic Vertical Velocity in HYCOM, Tech Report, 7 pp.
  • [39] Halliwell, G. R., 2004b. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Model. 7 (3), 285-322, http://dx.doi.org/10.1016/j.ocemod.2003.10.002.
  • [40] Heileman, S., Mistafa, N., 2008. III-6 Red Sea: LME# 33, The UNEP Large Marine Ecosystem Report: A Perspective on Changing Conditions [in:] LMEs of the World's Regional Seas, K. Sherman & G. Hempel (eds.), UNEP Regional Seas, Report and Studies.
  • [41] Heileman, S., Lutjeharms, J. R. E., Scott, L. E. P., 2008. Red Sea, LME Report by the Oceanographic Res. Inst., Durban.
  • [42] Hu, C., Lee, Z., Franz, B., 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 117 (C1), 25 pp., http://dx.doi.org/10.1029/2011jc007395.
  • [43] Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R., Chen, C., 2009. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett. 36 (19), 1-6, http://dx.doi.org/10.1029/2009GL040008.
  • [44] Kahru, M., Gille, S. T., Murtugudde, R., Strutton, P. G., Manzano-Sarabia, M., Wang, H., Mitchell, B. G., 2010. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. Oceans 115 (C12), 11 pp., http://dx.doi.org/10.1029/2010jc006500.
  • [45] Kämpf, J., Chapman, P., 2016. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems. Springer, 433 pp., http://dx.doi.org/10.1007/978-3-319-42524-5.
  • [46] Kara, A. B., Rochford, P. A., Hurlburt, H. E., 2003. Mixed layer depth variability over the global ocean. J. Geophys. Res. Oceans 108 (C3), 15 pp., http://dx.doi.org/10.1029/2000jc000736.
  • [47] Koblentz-Mishke, O. J., Volkovinsky, V. V., Kabanova, J. G., 1970. Plankton primary production of the world ocean. In: Wooster, W. S. (Ed.), Scientific Exploration of the South Pacific. Nat. Acad. Sci., Washington, D.C., 257 pp.
  • [48] Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G., van Dijken, G., 2003. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48 (6), 2355-2368, http://dx.doi.org/10.4319/lo.2003.48.6.2355.
  • [49] Langodan, S., Cavaleri, L., Viswanadhapalli, Y., Hoteit, I., 2014. The Red Sea: a natural laboratory for wind and wave modeling. J. Phys. Oceanogr. 44 (12), 3139-3159, http://dx.doi.org/10.1175/JPO-D-13-0242.1.
  • [50] Large, W. G., Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11 (3), 324-336, http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
  • [51] Levanon-Spanier, I., Padan, E., Reiss, Z., 1979. Primary production in a desert-enclosed sea - the Gulf of Elat (Aqaba), Red Sea. Deep Sea Res. A Oceanogr. Res. Pap. 26 (6), 673-685, http://dx.doi.org/10.1016/0198-0149(79)90040-2.
  • [52] Li, J., Wang, D., Chen, J., Yang, L., 2012. Comparison of remote sensing data with in-situ wind observation during the development of the South China Sea monsoon. Chin. J. Oceanol. Limnol. 30 (3), 933-943, http://dx.doi.org/10.1007/s00343-012-1285-6.
  • [53] Lindell, D., Post, A. F., 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40 (6), 1130-1141, http://dx.doi.org/10.4319/lo.1995.40.6.1130.
  • [54] Loya, Y., Genin, A., el-Zibdeh, M., Naumann, M. S., Wild, C., 2014. Reviewing the status of coral reef ecology of the Red Sea: key topics and relevant research. Coral Reefs 33 (4), 1179-1180, http://dx.doi.org/10.1007/s00338-014-1170-1.
  • [55] Maritorena, S., O'Reilly, J. E., 2000. OC2v2: update on the initial operational SeaWiFS chlorophyll a algorithm. NASA Tech. Memo. 2000-206892, vol. 11. NASA Goddard Space Flight Center, Greenbelt, Maryland, 3-8.
  • [56] Marullo, S., Santoleri, R., Malanotte-Rizzoli, P., Bergamasco, A., 1999. The sea surface temperaturę field in the Eastern Mediterranean from advanced very high resolution radiometer (AVHRR) data: Part II. Interannual variability. J. Mar. Syst. 20 (1), 83-112, http://dx.doi.org/10.1016/S0924-7963(98)00072-4.
  • [57] Marullo, S., Nardelli, B. B., Guarracino, M., Santoleri, R., 2007. Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): re-analysis and validation. Ocean Sci. 3 (2), 299-310, http://dx.doi.org/10.5194/os-3-299-2007.
  • [58] McWilliams, J. P., Côté, I. M., Gill, J. A., Sutherland, W. J., Watkinson, A. R., 2005. Accelerating impacts of temperature-induced coral bleaching in the Caribbean. Ecology 86 (8), 2055-2060, http://dx.doi.org/10.1890/04-1657.
  • [59] Morcos, S. A., 1970. Physical and chemical oceanography of the Red Sea. Ocean. Mar. Biol. Ann. Rev. 8, 73-202.
  • [60] Nykjaer, L., 2009. Mediterranean Sea surface warming 1985-2006. Clim. Res. 39 (1), 11-17, http://dx.doi.org/10.3354/cr00794.
  • [61] Ocean Biology Processing Group, 2003. MODIS Aqua Level 3 Global Daily Mapped 4km Chlorophyll a. Ver. 6. PO.DAAC, CA, USA. (accessed 01.09.15).
  • [62] Omstedt, A., 2011. Guide to Process Based Modeling of Lakes and Coastal Seas. Springer Science & Business Media, 258 pp., http://dx.doi.org/10.1007/978-3-642-17728-6.
  • [63] Ouyang, Y., 2005. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 39 (12), 2621-2635, http://dx.doi.org/10.1016/j.watres.2005.04.024.
  • [64] Papadopoulos, V. P., Abualnaja, Y., Josey, S. A., Bower, A., Raitsos, D. E., Kontoyiannis, H., Hoteit, I., 2013. Atmospheric forcing of the winter air-sea heat fluxes over the northern Red Sea. J. Clim. 26 (5), 1685-1701, http://dx.doi.org/10.1175/JCLI-D-12-00267.1.
  • [65] Patzert, W. C., 1974. Wind-induced reversal in Red Sea circulation. Deep Sea Res. Oceanogr. Abstr. 21 (2), 109-121, http://dx.doi.org/10.1016/0011-7471(74)90068-0.
  • [66] Pedgley, D. E., 1974. An Outline of the Weather and Climate of the Red Sea. L'oceanographie Phys. la Mer Rouge. CNEXO, Paris, 9-27.
  • [67] Persson, A., 2011. User Guide to ECMWF Forecast Products. ECMWF, 129 pp.
  • [68] Pickard, G. L., Emery, W. J., 1990. Descriptive Physical Oceanography: An Introduction. Elsevier, 320 pp., http://dx.doi.org/10.1016/c2009-0-11176-5.
  • [69] Pickett, M. H., Tang, W., Rosenfeld, L. K., Wash, C. H., 2003. QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J. Atmos. Ocean. Technol. 20 (12), 1869-1879, http://dx.doi.org/10.1175/1520-0426(2003)020<1869:QSCWNB>2.0.CO;2.
  • [70] Raitsos, D. E., Hoteit, I., Prihartato, P. K., Chronis, T., Triantafyllou, G., Abualnaja, Y., Release, E. O., Hole, W., Hole, W., Sciences, A., Carolina, N., Hole, W., Hole, W., 2011. Abrupt warming of the Red Sea. Geophys. Res. Lett. 38 (14), 1410-1425.
  • [71] Raitsos, D. E., Pradhan, Y., Brewin, R. J. W., Stenchikov, G., Hoteit, I., 2013. Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 8 (6), e64909, http://dx.doi.org/10.1371/journal.pone.0064909.
  • [72] Rao, N. V. N. D., Behairy, A. K. A., 1986. Nature and composition of shore-zone sediments between Jeddah and Yanbu, eastern Red Sea. Mar. Geol. 70 (3), 287-305, http://dx.doi.org/10.1016/0025-3227(86)90006-X.
  • [73] Rasul, N. M. A., Stewart, I. C. F., 2015. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer, 353 pp., http://dx.doi.org/10.1007/978-3-662-45201-1.
  • [74] Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G., 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20 (22), 5473-5496, http://dx.doi.org/10.1175/2007JCLI1824.1.
  • [75] Ricciardulli, L., Wentz, F. J., Smith, D. K., 2011. Remote Sensing Systems QuikSCAT Ku-2011 [Monthly] Orbital Swath Ocean Vector Winds L2B, Version 4. Remote Sensing Systems, Santa Rosa, CA, Available at: www.remss.com/missions/qscat (accessed 01.09.15).
  • [76] Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., Halpin, P. N., 2010. Marine Geospatial Ecology Tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ. Model. Softw. 25 (10), 1197-1207, http://dx.doi.org/10.1016/j.envsoft.2010.03.029.
  • [77] Samelson, R. M., Skyllingstad, E. D., Chelton, D. B., Esbensen, S. K., O'Neill, L. W., Thum, N., 2006. On the coupling of wind stress and sea surface temperature. J. Clim. 19 (8), 1557-1566, http://dx.doi.org/10.1175/JCLI3682.1.
  • [78] Sarhan, T., García, J., Vargas, M., Vargas, J. M., Plaza, F., et al., 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23 (4), 317-331, http://dx.doi.org/10.1016/S0924-7963(99)00068-8.
  • [79] Shaltout, M., Omstedt, A., 2014. Recent sea surface temperaturę trends and future scenarios for the Mediterranean Sea. Oceanologia 56 (3), 411-443, http://dx.doi.org/10.5697/oc.56-3.411.
  • [80] Shaltout, M., El Gindy, A., Omstedt, A., 2013. Recent climate trends and future scenarios along the Egyptian Mediterranean coast. Geofizika 30 (1), 19-41.
  • [81] Shamsudduha, M., Chandler, R. E., Taylor, R. G., Ahmed, K. M., 2009. Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol. Earth Syst. Sci. 13 (12), 2373-2385, http://dx.doi.org/10.5194/hess-13-2373-2009.
  • [82] Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., Lascaratos, A., 2012. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn. 62 (1), 13-30, http://dx.doi.org/10.1007/s10236-011-0493-5.
  • [83] Sofianos, S. S., 2003. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J. Geophys. Res. 108 (C3), 3066, http://dx.doi.org/10.1029/2001JC001185.
  • [84] Sofianos, S. S., Johns, W. E., 2003. An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Threedimensional circulation in the Red Sea. J. Geophys. Res. Oceans 108 (C3), 15 pp., http://dx.doi.org/10.1029/2001jc001185.
  • [85] Sofianos, S. S., Johns, W. E., 2007. Observations of the summer Red Sea circulation. J. Geophys. Res. 112 (C6), C06025, http://dx.doi.org/10.1029/2006JC003886.
  • [86] Sofianos, S. S. S., Johns, W. E. E., Murray, S. P. P., 2002. Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Res. Pt. II: Top. Stud. Oceanogr. 49 (7), 1323-1340, http://dx.doi.org/10.1016/S0967-0645(01)00164-3.
  • [87] Stambler, N., 2005. Bio-optical properties of the northern Red Sea and the Gulf of Eilat (Aqaba) during winter 1999. J. Sea Res. 54 (3), 186-203, http://dx.doi.org/10.1016/j.seares.2005.04.006.
  • [88] Tang, D., Kawamura, H., Luis, A. J., 2002. Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sens. Environ. 81 (1), 82-89, http://dx.doi.org/10.1016/S0034-4257(01)00334-0.
  • [89] Tong, J., Gan, Z., Qi, Y., Mao, Q., 2010. Predicted positions of tidal fronts in continental shelf of South China Sea. J. Mar. Syst. 82 (3), 145-153, http://dx.doi.org/10.1016/j.jmarsys.2010.04.011.
  • [90] Trenberth, K. E., Large, W. G., Olson, J. G., 1990. The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr. 20 (11), 1742-1760, http://dx.doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.
  • [91] Triantafyllou, G., Yao, F., Petihakis, G., Tsiaras, K. P., Raitsos, D. E., Hoteit, I., 2014. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J. Geophys. Res. Oceans 119 (3), 1791-1811, http://dx.doi.org/10.1002/2013JC009641.
  • [92] Williams, R. G., Follows, M. J., 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Cambridge University Press, 316-324, http://dx.doi.org/10.1017/cbo9780511977817.010.
  • [93] Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemom. Intell. Lab. Syst. 2 (1-3), 37-52, http://dx.doi.org/10.1016/0169-7439(87)80084-9.
  • [94] Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Köhl, A., Gopalakrishnan, G., Rivas, D., 2014. Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J. Geophys. Res. Oceans 119 (4), 2263-2289, http://dx.doi.org/10.1002/2013JC009331.
  • [95] Zhai, P., Bower, A. S., Smethie, W. M., Pratt, L. J., 2015. Formation and spreading of Red Sea Outflow Water in the Red Sea. J. Geophys. Res. Oceans 120 (9), 6542-6563, http://dx.doi.org/10.1002/2015JC010751.
  • [96] Zhan, P., Subramanian, A. C., Yao, F., Hoteit, I., 2014. Eddies in the Red Sea: a statistical and dynamical study. J. Geophys. Res. Oceans 119 (6), 3909-3925, http://dx.doi.org/10.1002/2013jc009563.
  • [97] Zhan, P., Subramanian, A. C., Yao, F., Kartadikaria, A. R., Guo, D., Hoteit, I., 2016. The eddy kinetic energy budget in the Red Sea. J. Geophys. Res. Oceans 121 (7), 4732-4747, http://dx.doi.org/10.1002/2015jc011589.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa35147-b667-45e4-a6f2-65ca55b08a55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.