PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Assesment of Physical Variables of the Soil Quality Index in the Coal Mine Spoil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aimed to evaluate the physical properties of the soils on the slope of the spoil heap of the coal mine in Bogdanka based on literature and the authors’ opinion. The field soil tests were carried out in the agricultural season of 2018 in the coal mine waste dump. The main purpose was to develop and apply the soil physical quality index. For the calculation of the SPQI used nine soil physical properties: texture, bulk density, MWD, AWC, K, POR, PAW, S, StI. The paper used a system for assessing the physical parameters of soil within the range from 0 to 4. On the basis of the research, it was found that the best parameters of soil quality occurred in the surface horizons and increased with depth. The SPQI value calculated for the 0–60 cm Technosol layer was 0.51, which indicates good soil parameters.
Słowa kluczowe
Rocznik
Strony
143--150
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • University of Life Science in Lublin, Lublin University of Technology
  • Lublin University of Technology, Poland
Bibliografia
  • 1. Albaladejo J., Ortiz R., García-Franco N., Ruíz-Navarro A., Almagro M., García-Pintado J., Martínez-Mena M., 2013. Land-use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 13, 265–277.
  • 2. Aimrun W., Amin M.S.M., Eltaib S.M., 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 121(3–4), 197–203.
  • 3. Amacher M.C., Perry C.H., 2007. Soil vital signs: a new soil quality index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p.
  • 4. Andrews S.S., Carroll C.R., 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585.
  • 5. Andrews S.S., Karlen D.L., Cambardella C.A., 2004. The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 68, 1945–1962.
  • 6. Armenise E., Redmile-Gordon M.A., Stellacci A.M., Ciccarese A., Rubino P., 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil Till. Res. 130, 91–98.
  • 7. Asensio V., Guala S.D., Vega F.A., Covelo E.F., 2013. A soil quality index for reclaimed mine soils, environ. Toxicol. Chem. 32, 2240–2248.
  • 8. Asgarzadeh H., Mosaddeghi M.R., Mahboubi A.A., Nosrati A., Dexter A.R., 2010. Soil water availability for plants as quantified by convention available water, least limiting water range and integral water capacity. Plant soil 335, 229–240.
  • 9. Barthès B., Roose E., 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47, 133–149.
  • 10. Bastida F., Zsolnay A., Hernandez T., Garcia C., 2008. Past, present and future of soil quality indices: a biological perspective. Geoderma 147, 159–171.
  • 11. Borchulski Z., Grudzińska A., Łyszczarz L., Święs F., 1994. Koncepcja rekultywacji biologicznej odpadów pogórniczych KWK „Bogdanka”. Bezpieczeństwo pracy i ochrona środowiska w górnictwie. Kwartalnik Wyższego Urzędu Górniczego 3(11), 5–9.
  • 12. Borek Ł. 2019. The use of different indicators to evaluate chernozems fluvisols physical quality in the Odra River valley: a case study. Pol. J. Environ. Stud. 28 (6), 4109–4116.
  • 13. Cherubin M.R.,. Karlen D.L., Franco A.L.C., Tormena C.A., Cerri C.E.P., Davies C.A., Cerri C.C., 2016. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 267, 156–170.
  • 14. Ciosmak M., Grzywna A., Bochniak A. 2017. The effect of hard coal mine drainage water on the quality of surface and ground waters. Rocznik Ochrona Środowiska, 19, 411–422.
  • 15. Czyż E.A., 2004. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil Till. Res. 79, 153–166.
  • 16. Dexter A.R., Czyż E.A., 2007. Applications of Stheory in the study of soil physical degradation and its consequences. Land degradation & development 18, 369–380.
  • 17. Drewry J.J., Cameron K.C., Buchan G.D., 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing: a review. Aust. J. Soil Res. 46, 237–249.
  • 18. Dwevedi A., Kumar P., Kumar P., Kumar Y., Sharma Y.S., Kayastha A.M. 2017. Soil sensors: detailed insight into research updates, significance, and future prospects. Chapter in new pesticides and soil sensors. Academic press 561–590.
  • 19. Feiza V., Feiziene D., Kadziene G., Lazauskas S., Deveikyte I., Slepetiene A., Seibutis V., 2011. Soil state in the 11th year of three tillage systems application on a Cambisol. Journal of Food, Agriculture and Environment 9, 1088–1095.
  • 20. Gazda L., Oleszczyński B., 1988. Charakterystyka mineralogiczno-chemiczna oraz analiza możliwości wykorzystania przeróbczych odpadów przywęglowych z kopalni w Bogdance. Przegląd Górniczy 44(11–12), 16–18.
  • 21. Girmay G., Singh B.R., 2012. Changes in soil organic carbon stocks and soil quality: Land-use system effects in northern Ethiopia. Acta Agric. Scand. B 62, 519–530.
  • 22. Głąb T., Kulig B., 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res., 99, 169–178.
  • 23. Hamza M.A., Anderson W.K., 2005. Soil compaction in cropping systems. A review of nature, causes and possible solutions. Soil Till. Res. 82, 121–130.
  • 24. Imaz M.J., Virto I., Bescansa P., Enrique A., Fernandez-Ugalde O., Karlen D.L., 2010. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil Till. Res. 107, 17–25.
  • 25. Iwanek M., 2008. A method for measuring saturated hydraulic conductivity in anisotropic soils. Soil Sci. Soc. Am. J., 72, 1527–1531.
  • 26. Karlen D.L., Andrews S.S., Doran J.W., 2001. Soil quality: current concepts and applications. Advances in agronomy. Academic press 1–40.
  • 27. Kondracki J., 2001. Geografia regionalna Polski. PWN Warszawa.
  • 28. Lal R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. Washington D.C.: USDA/SMSS Technical monograph 21.
  • 29. Lipiec J., Walczak R., Witkowska-Walczak B., Nosalewicz A., Słowińska-Jurkiewicz A., Sławiński C., 2007. The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis. Soil Till. Res. 97, 239–246.
  • 30. Masto R.E., Chhonkar P.K., Singh D., Patra A.K., 2008. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment 136, 419–435.
  • 31. Masto R.E., Sheik S., Nehru G., Selvi V.A., George J., Ram L.C., 2015. Environmental soil quality index and indicators for a coal mining soil. Solid Earth Discuss. 7, 617–638.
  • 32. Mohanty B.P., Mousli Z., 2000. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition. Water Resources Res. 36, 3311–3324.
  • 33. Moncada M.P., Ball B.C., Gabriels D., Lobo D., Cornelis W.M., 2015. Evaluation of soil physical quality index s for some tropical and temperate medium-textured soils. Soil Sci. Soc. Am. J. 79, 9–20.
  • 34. Moncada M.P., Penning L.H., Timm L.C., Gabriels D., Cornelis W.M., 2014. Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses. Soil Till. Res. 140, 20–32.
  • 35. Mukherjee A., Lal R., 2014. Comparison of soil quality index using three methods. Plos one 9(8), e105981. Doi:10.1371/journal.pone.0105981
  • 36. Mukhopadhyay S., Masto R.E., Yadav A., George J., Ram L.C., Shukla S.P., 2016. Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment 542, Part A, 40–550.
  • 37. Muršec M., Leveque J., Chaussod R., Curmi P., 2018. The impact of drip irrigation on soil quality in sloping orchards developed on marl – a case study. Plant, soil environ 64, 20.
  • 38. Nabayi A., Girei A. H., Abubakar M. S., 2019. Physical and hydraulic properties of soils under a long-term tillage practices in Hadejia Local Government Area, Jigawa State, Nigeria. Eurasian Journal of Soil Science 8, 267–274.
  • 39. Nakajima T., Lal R., Jiang S., 2015. Soil quality index of a Crosby silt loam in central Ohio. Soil Till. Res. 146, 323–328.
  • 40. Paluszek J., 2011. Kryteria oceny jakości fizycznej gleb uprawnych Polski. Acta Agrophysica, Rozprawy i monografie 191.
  • 41. Pieri C.J.M.G., 1992. fertility of soils: a future for farming in the west African savannah. SpringerVerlag. Berlin, Germany.
  • 42. Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang X.M., 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 152, 252.
  • 43. Reynolds W.D., Drury C.F., Yang X.M., Tan C.S., 2008. Optimal soil physical quality inferred through structural regression and parameter interaction. Geoderma 146, 466–474.
  • 44. Salehi A., Malek M., 2012. Evaluation of soil physical and chemical properties in poplar plantations in north of Iran. Ecologia Balkanica 4(2), 69–76
  • 45. Shukla M.K., Lal R., Ebinger M., 2006. Determining soil quality indicators by factor analysis. Soil Till. Res. 87, 194–204.
  • 46. Singh M.J., Khera K.L., 2009. Physical indicators of soil quality in relation to soil erodibility under different land use. Arid Land Res. Manag. 23, 152–167.
  • 47. Święs F., Kwiatkowska-Farbiś M., 1996. Szata roślinna na hałdzie skały płonnej przy kopalni węgla kamiennego „Bogdanka” S.A. (Lubelskie Zagłębie Węglowe). Ann. Univ. Mariae Curie-Skłodowska C, 51, 41–58.
  • 48. Tárník A., Leitmanová M., 2017. Analysis of the development of available soil water storage in the Nitra river catchment. IOP Conf. Series: Materials Science and Engineering 245–256.
  • 49. Touil S., Degré A., Chabaca M.N., 2016. Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria. Soil 2, 647.
  • 50. Turski R., Baran S., Kwiecień I., 1991. Możliwość rolniczego zagospodarowania odpadów górniczych z KWK „Bogdanka”. Ann. Univ. Mariae CurieSkłodowska E, 46, 149–153.
  • 51. Vizitiu O., Calciu I., Pănoiu I., Simota C., 2011. Soil physical quality as quantified by S index and hidrophysical indices of some soils from agree hydrographic basin. Research Journal of Agricultural Science 43, 249–261.
  • 52. WRB: World reference base for soil resources, 2014. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO, World Soil Resources Reports No. 106.
  • 53. Zobeck T.M., Steiner J.L., Stott D.E., Duke S.E., Starks P.J., Moriasi D.N.,. Karlen D.L., 2015. Soil quality index comparisons using Fort Cobb, Oklahoma, watershed-scale land management data. Soil Sci. Soc. Am. J. 79, 224–238.
  • 54. Zornoza R., Mataiz-Solera J., Guerrero J., Arcenegui V., García-Orenes F., Mataix-Beneyto J., Morugán A., 2007. Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Sci. Total Environ. 378, 233–237.
  • 55. Zornoza R., Acosta J. A., Bastida F., Domínguez S. G., Toledo D. M., Faz A., 2015. Identification of sensitive indicators to assess the inter relationship between soil quality, management practices and human health. Soil 1, 173–185.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa34d01-b803-44e0-814f-de47091b65f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.