Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the aerodynamic forces acting on a part of a water slide or other object with curved, tubular shape, depending on the section of a torus and value of the wind velocity, were obtained. This was done by means of finite element method (FEM) and finite volume method (FVM) computer simulations, using modules: computational fluid dynamics (CFD) and fluid-structure interaction (FSI) and taking into account the Eurocode EN 1991-1-4.
Rocznik
Tom
Strony
151--167
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Department of Theory of Building Structures Faculty of Civil Engineering Silesian University of Technology Akademicka 5, 44-100 Gliwice, Poland
autor
- Department of Theory of Building Structures Faculty of Civil Engineering Silesian University of Technology Akademicka 5, 44-100 Gliwice, Poland
autor
- Department of Theory of Building Structures Faculty of Civil Engineering Silesian University of Technology Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
- [1] T. Adachi. The effect of surface roughness of a body in the high Reynolds – number flow. International Journal of Rotating Machinery, 2: 23–32, 1995.
- [2] J. Anderson. Computational Fluid Dynamics. The basics with applications. McGraw-Hill, Inc., USA, 1995.
- [3] ANSYS Documentation for Release 14.5/Customer Training Material. ANSYS Inc., 2012.
- [4] P. Catalano, M. Wang, G. Iaccarino, P. Moin. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow, 24: 463–469, 2003.
- [5] prEN 1991-1-4, Eurocode 1: Actions on structures – Part 1–4: General actions – Wind actions with National Annex. CEN, Brussels 2005; PKN, Warszawa, 2008.
- [6] 2D NACA 0012 Airfoil Validation Case. SST Model Results. Langley Research Center. Turbulence Modeling Resource. Accessed http://turbmodels.larc.nasa.gov/naca0012valsst.html.
- [7] Introduction to Abaqus/CFD. Dassault Systemes, 2010.
- [8] K. Jeżowiecka-Kabsch, H. Szewczyk. Fluid Mechanics [in Polish: Mechanika płynów]. Oficyna Wydawnicza Politechniki Wrocławskiej. Wrocław, 2001.
- [9] T. Jiyuan, H. Guan, L. Chaoqun. Computational Fluid Dynamics. A Practical Approach. Elsevier Inc., USA, 2008.
- [10] F. Menter, T. Esch. Elements of industrial heat transfer predictions. COBEM 2001, 16th Brazilian Congress of Mechanical Engineering, 2001.
- [11] F. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32: 1598–1605, 1994.
- [12] F. Menter. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper: 93–2906, 1993.
- [13] A. Padewska. Determination of response of nontypical shape objects on wind load. Current research and analysis of civil engineering. The scientific works of PhD students. Collective work edited by Joanna Bzówka [in Polish: Wyznaczanie siły oddziaływania wiatru na obiekty o nietypowym kształcie. Aktualne badania i analizy z inżynierii lądowej. Prace naukowe doktorantów]. Gliwice, Wydaw. Politechniki Śląskiej, 621–628, 2013.
- [14] A. Roshko. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 10: 345–356, 1961.
- [15] Solving FSI Applications Using ANSYS Mechanical and ANSYS FLUENT. Training course. ANSYS Inc., 2012.
- [16] H. Versteeg, W. Malalasekera. An Introduction to computational fluid dynamics: the finite volume method. Pearson Education Ltd., 2007.
- [17] K. Warschauer, J. Leene. Experiments on mean and fluctuating pressures of circular cylinders at cross flow at very high Reynolds number. Proc. Int. Conf. on Wind Effects on Buildings and Structures, pp. 305–315. Tokyo, Japan, 1971.
- [18] D. Wilcox. Turbulence modelling for CFD. DCW Industries, USA, 2006.
- [19] M. Zdravkovich. Flow around circular cylinders. Fundamentals, vol. 1, chapter 6. Oxford University Press, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4aa04c56-6eaf-496f-88b8-0078a140e0d7