PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Study on Path Interval and Two Tool Condition Parameters in Ball and Filleted End Milling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Milling is widely used as a versatile, highly automated manufacturing process. The selection of tool and its machining conditions is an ever-present challenge inherent in the process. To provide some findings contributable for the process planning, this study focuses on ball and filleted end milling. After the path interval determinations were explained briefly, the characteristics of each procedure were revealed with experimental verifications. The results of computational procedures showed good agreement with the experimental ones. Then, predominant frictional distance and cutting speed were proposed for effective selection of machining conditions. The discussion was given based on the results obtained from the demonstrations. Moreover, the relationships to path interval were elucidated through the discussion. In conclusion, several outcomes were organized from the experimental and numerical evidences.
Twórcy
  • Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University
Bibliografia
  • 1. Mali R.A., Gupta T.V.K., Ramkumar J. A comprehensive review of free-form surface milling– Advances over a decade. Journal of Manufacturing Processes. 2021; 62: 132–167.
  • 2. Al-wswasi M., Ivanov A., Makatsoris H. A survey on smart automated computer-aided process planning (ACAPP) techniques. Int J Adv Manuf Technol. 2018; 97: 809–832.
  • 3. Mourtzis D., Doukas M., Bernidaki D., Simulation in Manufacturing: Review and Challenges, Procedia CIRP. 2014; 25: 213–229.
  • 4. Liang F., Kang C., Fang F. A review on tool orientation planning in multi-axis machining. International Journal of Production Research. 2020; 1–31.
  • 5. Honeycutt A., Schmitz T.L. Milling Bifurcations: A Review of Literature and Experiment. J. Manuf. Sci. Eng. 2018; 140: 120801.
  • 6. Peng T., Xu X. Energy-efficient machining systems: a critical review, Int J Adv Manuf Technol. 2014; 72: 1389–1406.
  • 7. Moradnazhad M., Unver H.O. Energy efficiency of machining operations: A review. Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manufacture. 2016; 231: 1871–1889.
  • 8. Konobrytskyi D., Hossain M.M., Tucker T.M., Tarbutton J.A., Kurfess T.R. 5-Axis tool path planning based on highly parallel discrete volumetric geometry representation: Part I contact point generation. Computer-Aided Design and Applications. 2018; 15: 76-89.
  • 9. Bo P., Bartoň M., Plakhotnik D., Pottmann H. Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution, Comput. Aided Des. 2016; 79: 1–11.
  • 10. Harik R.F., Gong H., Bernard A. 5-axis flank milling: A state-of-the-art review, Comput. Aided Des. 2013; 45: 796–808.
  • 11. Mladenovic G.M., Tanovic L.M., Ehmann K.F. Tool path generation for milling of free form surfaces with feedrate scheduling, FME Transactions. 2015; 43: 9–15.
  • 12. Balabokhin A., Tarbutton J. Iso-scallop tool path building algorithm “based on tool performance metric” for generalized cutter and arbitrary milling zones in 3-axis CNC milling of free-form triangular meshed surfaces. Journal of Manufacturing Processes. 2017; 28: 565–572.
  • 13. Tuanl L.H., Makhanov S.S. Accurate Scallop Evaluation Method Considering Kinematics of Fiveaxis Milling Machine for Ball-end Mill, Materials Science and Engineering. 2020; 840: 012006.
  • 14. Xu J., Zhang H., Sun Y. Swept surface-based approach to simulating surface topography in ball-end CNC milling. Int J Adv Manuf Technol. 2018; 98: 107–118.
  • 15. Sekine T., Obikawa T. Normal-Unit-Vector-Based Tool Path Generation Using a Modified Local Interpolation for Ball-End Milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2010; 4: 1246–1260.
  • 16. Obikawa T., Sekine T. A Higher-Order Formula of Path Interval for Tool-Path Generation, International Journal of Automation Technology. 2011; 5663–668.
  • 17. Vickers G.W., Quan K.W. Ball-mills versus endmills for curved surface machining, Trans. ASME, J. Eng. Ind. 1989; 111: 22–26
  • 18. Sekine T., Obikawa T. Novel path interval determination in 5-axis flat end milling, Applied Mathematical Modelling. 2015; 39: 3459–3480.
  • 19. Liang F., Kang C., Lu Z., Fang F. Iso-scallop tool path planning for triangular mesh surfaces in multiaxis machining. Robotics and Computer-Integrated Manufacturing. 2021; 72: 102206.
  • 20. Plakhotnik D., Lauwers B. Computing of the actual shape of removed material for five-axis flat-end milling, Computer-Aided Design. 2012; 44: 1103–1114.
  • 21. Zhang X., Zhang W., Zhang J., Pang B., Zhao W. Systematic study of the prediction methods for machined surface topography and form error during milling process with flat-end cutter, Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manufacture. 2019; 233: 226–242.
  • 22. Kruth J.P., Klewais P. Optimization and Dynamic Adaptation of the Cutter Inclination during Five-Axis Milling of Sculptured Surfaces, CIRP Annals. 1994; 43: 443–448.
  • 23. Sekine T., Obikawa T., Hoshino M. Establishing a Novel Model for 5-Axis Milling with Filleted End Mill, Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2012; 6: 296–309.
  • 24. Bedi S., Ismail F., Mahjoob M.J., Chen Y. Toroidal Versus Ball Nose and Flat Bottom End Mills. International Journal of Advanced Manufacturing Technology. 1997; 13: 326–332.
  • 25. Sekine T. A Computational Algorithm for Path Interval Determination in Multi-Axis Filleted End Milling. Adv. Sci. Technol. Res. J. 2020; 14: 198–205.
  • 26. Quinsat Y., Lavernhe S., Lartigue C. Characterization of 3D surface topography in 5-axis milling. Wear. 2011; 271: 590–595.
  • 27. Hendriko H. A hybrid analytical and discrete based methodology to calculate path scallop of helical toroidal cutter in fiveaxis milling, FME Trans. 2018; 46: 552–559.
  • 28. Sekine T., Kameya K. Remarkable characteristics of a novel path interval determination in filleted end milling. Journal Européen des Systèmes Automatisés. 2021; 54: 461–468.
  • 29. Khorasani A.M., Yazdi M.R.S., Safizadeh M.S. Analysis of machining parameters effects on surface roughness: a review. Int. J. Comput. Mater. Sci. Surf. Eng. 2012; 5: 68–84.
  • 30. Perez I., Madariaga A., Arrazola P.J., Cuesta M., Soriano D. An analytical approach to calculate stress concentration factors of machined surfaces. Int. J. Mech. Sci. 2021; 190: 106040.
  • 31. Käsemodel R.B., de Souza A.F., Voigt R., Basso I., Rodrigues A.R. CAD/CAM interfaced algorithmreduces cutting force, roughness, and machining time in free-form milling. Int J Adv. Manuf. Technol. 2020; 107: 1883–1900.
  • 32. Wojciechowski S., Maruda R.W., Nieslony P., Krolczyk G.M. Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences. 2016; 119: 360–369.
  • 33. Zhang X., Zhang J., Zheng X., Pang B., Zhao W. Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP Journal of Manufacturing Science and Technology. 2017; 19: 106–116.
  • 34. Altintaş Y., Budak E. Analytical Prediction of Stability Lobes in Milling, CIRP Annals. 1995; 44: 357–362.
  • 35. Habibi M., Kilic Z.M., Altintas Y. Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations, ASME. J. Manuf. Sci. Eng. 2021; 143: 021009.
  • 36. Masmiati N., Sarhan A.A.D. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement. 2015; 60: 267–275.
  • 37. Zhang G., Guo C. Modeling Flank Wear Progression Based on Cutting Force and Energy Prediction in Turning Process, Procedia Manufacturing. 2016; 5: 536–545.
  • 38. Sekine T. Study on Tool Condition Parameters Intended for Smart Tool Management in Filleted end Milling. Adv. Sci. Technol. Res. J. in press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a9ad8c0-1d78-4341-b1f4-71e41663c206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.