Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical model for analysis of thermal and mechanical loads of a rocket motor has been developed. This model of a solid propellant motor corresponds to a short range, fast lunch and cruise type missile. It has been elaborated using the Finite Element Method (FEM) incorporated into commercial Comsol/M code. The experimental data on the thrust profile have been utilised to develop proper initial and boundary conditions for forgoing numerical calculations. The studies have been focused on the temperature and stress evolution within the case and nozzle section of the rocket engine. A special attention has been paid to the graphite insert of the rocket motor throat. The performed analyses proved effectiveness of the modelling methodology that will be applied to investigations of the modified motor performance.
Czasopismo
Rocznik
Tom
Strony
803--814
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Military University of Technolgy, Faculty of Mechatronics and Aerospace, Warsaw, Poland
autor
- Military University of Technolgy, Faculty of Mechatronics and Aerospace, Warsaw, Poland and Air Force Institute of Technology, Warsaw, Poland
autor
- Military University of Technolgy, Faculty of Mechatronics and Aerospace, Warsaw, Poland
autor
- Air Force Institute of Technology, Warsaw, Poland
Bibliografia
- 1. Bejan A., Kraus A.D., 2003, Heat Transfer Handbook, John Willey & Sons, Inc., New York
- 2. Davey T.B., 1963, Entrance region heat transfer coefficients, [In:] Heat Transfer, vol. 59, American Institute of Chemical Engineers; 1st Edition, 37-45
- 3. Grabowska M., 2012, Analysis of thermal load of a nozzle of short range missile rocket motor, MSc Thesis, Military University of Technology, Warsaw
- 4. Madejski J., 1998, Heat Transfer Theory, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, pp. 266
- 5. Material Property Database MPDG v.7.08, 2009, JAHM Software, Inc., USA
- 6. Mattingly J.D., Ohain H., 2006, Elements of Propulsion: Gas Turbines and Rockets, AIAA Education Series, The American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia
- 7. Morozov E.V., Pitot de la Beaujardiere J.F.P., 2009, Numerical simulation of the dynamic thermostructural response of a composite rocket nozzle throat, Composite Structures, 91, 412-420
- 8. Oates G.C., 1997, Aerothermodynamics of Gas Turbine and Rocket Propulsion, AIAA, Inc., Reston, Virginia
- 9. Panas A.J., 2011, IR support of thermophysical property investigation. Medical and advanced technology materials study, [Chapter 4 in:] Infrared Thermography, Raghu V. Prakash (Edit.), Intech, 2011, 65-90
- 10. Preiskorn M., Koniorczyk P., Zygmunt B., 2011, Numerical calculations of non-stationary temperature fields in non-cooled short-range anti-aircraft missile rocket engine nozzle (in Polish), Military University of Technology Bulletin, LX, 2, 47-61
- 11. Safta D., Vasile T., Ion I., 2011, Regarding the influence of high frequency combustion instabilities on operation of solid rocket motors, Problems of Mechatronics, Armament, Aviation, Safety Engineering, 1, 3, 7-24
- 12. Sutton G.P., Biblarz O., 2001, Rocket Propulsion Elements, John Willey & Sons, Inc., New York
- 13. Torecki S., 1984, Rocket Motors (in Polish), WKiŁ, Warsaw, pp. 260
- 14. Wiśniewski S., 1972, Thermal Loads of Internal Combustion Engines (in Polish), WKiŁ, Warsaw
- 15. Wiśniewski S., Wiśniewski T., 2000, Heat Transfer (in Polish), WNT, Warsaw
- 16. Żyluk A., Pietraszek M., 2014, Investigation of an additional oxidizer chage effect on selected characteristics of a solid-fuel rocket engine, Journal of Theoretical and Appled Mechanics, 52, 1, 139-149
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a950abb-1a65-48e6-96f9-e7e22c6df6a5