Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Complex interference complicates the description and interpretation of the depositional architecture of seismically thininterbedded reservoirs. We introduce a proportion wavelength factor, k, which is the ratio of the actual thickness to the dominant wavelength, to replace the actual bed thickness in modeling. The featured design, using the equal k-step and multilayer nested loops, provides an efficient method to establish a synthetic seismogram database to assist in the interpretation of seismic amplitude and to understand the complex architectures associated with interbedded thin reservoirs. One of the notable advantages of the k model database is that it is comprehensive and independent from the wavelet frequency variation. Another advantage is that we can assemble any special or interesting architecture model similar to building blocks, by selecting and arranging each k series according to the customized orders. We have set up a case database of a simple three-bed interference model based on the 90°-phase Ricker wavelet and demonstrate the possibility to describe almost all depositional architectures between two thin coal seams. We further also defined three interference patterns of one trough, two troughs encasing one peak, and an interference-free pattern within a three-bed model and have built two identification templates. We draw some meaningful conclusions about amplitudes of tuning effect, valley effect, and monotone increasing trend to reduce the interpretation ambiguity in individual bed thickness, total thickness, and thickness difference. The efficiency of interference pattern identification and more accurate seismic signature interpretation of thin coal seams with great variation in bed thickness and interval distance is illustrated by applying our approach on Permian coal-bearing cycles.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1565--1580
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Coal and Coal-Measure Gas Geology, Taiyuan 030024, China
autor
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Coal and Coal-Measure Gas Geology, Taiyuan 030024, China
autor
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Coal and Coal-Measure Gas Geology, Taiyuan 030024, China
Bibliografia
- 1. Bolshiyanov D, Makarov A, Savelieva L (2015) Lena river delta formation during the Holocene. Biogeosciences 12(3):579–593. https://doi.org/10.5194/bg-12-579-2015
- 2. Dong S, Ma Y, Zhou M (2004) Forward modeling of relationship between coal seam thickness and seismic attributes of amplitude and frequency. J China Univ Min Technol 33(1):29–32. https://doi.org/10.3321/j.issn:1000-1964.2004.01.007
- 3. Ge B, Yin G, Li C (1985) A preliminary study on sedimentary environments and law of coal-bearing formation in Yangquan, Shanxi. Acta Sedimentol Sinca 3(3):33–44. https://doi.org/10.14027/j.cnki.cjxb.1985.03.004
- 4. Gochioco L (1991) Tuning effect and interference reflections from thin beds and coal seams. Geophysics 56(8):1288–1295. https://doi.org/10.1190/1.1443151
- 5. Huang W, Yao F, Li H (2012) Regularities of tuning effects of thin interbedded layers and their net thickness. Oil Geophys Prospect 47(4):584–591. https://doi.org/10.13810/j.cnki.issn.1000-7210.2012.04.022
- 6. Knapp R (1990) Vertical resolution of thick beds, and thin-bed cyclothems. Geophysics 55(9):1183–1190. https://doi.org/10.1190/1.1442934
- 7. Koefoed O, De Voogd N (1980) The linear properties of thin layers, with an application to synthetic seismograms over coal seams. Geophysics 45(8):1254–1268. https://doi.org/10.1190/1.1441122
- 8. Li X, Wen H, Chen S et al (2013) Forward modeling studies on the time-frequency characteristics of isopachous thin interbedding. Chin J Geophys 56(3):1033–1042. https://doi.org/10.6038/cjg20130331
- 9. Li X, Tian Y, Cheng Y, Nie W (2019) Time-frequency characteristics analysis of orderly thickness-graded thin inter-beds based on affine smoothed pseudo-Wigner distribution. Oil Geophys Prospect 54(5):1094–1105. https://doi.org/10.13810/j.cnki.issn.1000-7210.2019.05.017
- 10. Liu L, Li J, Sun Y, Hu C (2017) Thin inter-bed prediction with time and frequency attributes. Oil Geophys Prospect 52(6):1261–1268. https://doi.org/10.13810/j.cnki.issn.1000-7210.2017.06.017
- 11. Pan G, Han G, Song R, Xu T, Liu F (2012) New seismic facies style of channels in Yinggehai Basin and gas-bearing prediction. Oil Geophys Prospect 47(6):984–989. https://doi.org/10.13810/j.cnki.issn.1000-7210.2012.06.021
- 12. Qian R (2007) Analysis of some issues in interpretation of seismic slices. Oil Geophys Prospect 42(4):482–488. https://doi.org/10.3321/j.issn:1000-7210.2007.04.023
- 13. Qiao H, Wang Zh, Li L (2015) Application of geological knowledge database of modern meandering river based on Satellite image. Geoscience 29(6):1444–1453. https://doi.org/10.3969/j.issn.1000-8527.2015.06.020
- 14. Ricker N (1953) Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics 18(4):769–792. https://doi.org/10.1190/1.1437927
- 15. Ruter, H and Schepers, R (1978) Investigation of the seismic response of cyclically layered carboniferous rock by means of synthetic seismograms. Geophys Prospect 26(1):29–47. https://doi.org/10.1016/0148-9062(78)91457-2
- 16. Tornqvist TE, Wallace DJ, Storms J et al (2008) Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat Geosci 1(3):173–176. https://doi.org/10.1038/ngeo129
- 17. Wang X, Jiang Z, Hu G et al (2020) Classification of sedimentary models of distributary channels in shallow-water deltas. J Earth Sci Environ 42(5):654–667. https://doi.org/10.13810/j.cnki.issn.1000-7210.2012.06.020
- 18. Wang Y, Li H, Li G et al (2020) A composite seismic attribute used to estimate the sand thickness for thin bed and thin interbed. Oil Geophys Prospect 55(1):153–160. https://doi.org/10.13810/j.cnki.issn.1000-7210.2020.01.018
- 19. Widess MB (1973) How thin is a thin bed? Geophysics 38(6):1176–1180. https://doi.org/10.1190/1.1440403
- 20. Xu W, Guo P, Hu T (2013) Thin interbed tuning and resolution analysis Oil. Geophys Prospect 48(5):750–757. https://doi.org/10.13810/j.cnki.issn.1000-7210.2013.05.020
- 21. Yin J, Wu B, Wang W et al (2015) Thin interbed thickness prediction using peak instaneous frequency of time-frequency Teager-Kaiser energy. Oil Geophys Prospect 50(3):516–522. https://doi.org/10.13810/j.cnki.issn.1000-7210.2015.03.019
- 22. Zeng H, Backus M (2005) Interpretive advantages of 90°-phase wavelets: part I – modeling. Geophysics 70(3):C7–C15. https://doi.org/10.1190/1.1925740
- 23. Zhu X, Dong Y, Zeng H et al (2020) Research status and thoughts on the development of seismic sedimentology in China. J Paleogeogr (Chin Ed) 22(3):397–411. https://doi.org/10.7605/gdlxb.2020.03.027
- 24. Zou G, Xu Z, Peng S et al (2018) Analysis of coal seam thickness and seismic wave amplitude. A wedge model. J Appl Geophys 148:245–255. https://doi.org/10.1016/j.jappgeo.2017.11.013
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a949b88-c423-4fae-af6d-e863d284900b