Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Przybliżone rozwiązania i analiza numeryczna modelu masy sprężynowej dla biegania
Języki publikacji
Abstrakty
The paper refers to the classic spring-mass model of running, which was created on the basis of an inverted elastic pendulum. A new approximate solution of the boundary value problem relayed to the governing system based on two nonlinear ordinary differential equations is introduced, which we get in this model in a natural way. We give theoretical support by deriving asymptotic behaviour of obtained approximations. Simulations show that new solutions turn out very well. Our results are illustrated with some practical examples.
W pracy rozważamy klasyczny model masy sprężynowej dla biegania oparty na odwróconym elastycznym wahadle. Przedstawiamy nowe przybliżone rozwiązanie interesującego zagadnienia brzegowego dla układu dwóch nieliniowych równań różniczkowych, które w naturalny sposób uzyskujemy w tym modelu. Badamy asymptotyczne zachowanie uzyskanych aproksymacji i podajemy asymptotyczną postać współczynnika spężystości nogi dla małych kątów ataku. Symulacje pokazują, że nowe rozwiązanie wypadło bardzo dobrze i wykazało dużą zgodność przybliżenia z rozwiązaniem dokładnym. Nasze wyniki zostały zilustrowane kilkoma praktycznymi przykładami pokazując, że pomiary parametrów biegu lekkoatletów są bliskie wartościom uzyskanym z modelu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
25--48
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] M. Adolphe, J. Clerval, Z. Kirchof, R. Lacombe-Delpech, and B. Zagrodny. Center of mass of human's body segments. Mechanics and Mechanical Engineering, 21 (3): 485-497, 2017. URL http://kdm.p.lodz.pl/articles/2017/3/21_3_4.pdf. Cited on p. 40.
- [2] R. M. Alexander. Energy-saving mechanisms in walking and running. Journal of Experimental Biology, 160 (1): 55-69, 1991. URL http://e.guigon.free.fr/rsc/article/AlexanderRM91.pdf. Cited on p. 25.
- [3] T. Anderson. Biomechanics and running economy. Sports Medicine, 22 (2): 76-89, 1996. doi: 10.1007/s40279-016-0474-4. Cited on p. 25.
- [4] R. Blickhan. The spring-mass model for running and hopping. Journal of Biomechanics, 22 (11/12): 1217-1227, 1989. doi: 10.1016/0021-9290(89)90224-8. Cited on pp. 26 and 27.
- [5] D. Brown. Tracker Video Analysis, 2013. Tracker is a free video analysis and modeling tool built on the Open Source Physics (OSP) Java framework. It is designed to be used in physics education. Tracker video modeling is a powerful way to combine videos with computer modeling. For more information see Particle Model Help or AAPT Summer Meeting posters Video Modeling (2008) and Video Modeling with Tracker (2009). Tracker Video Analysis https://www.physlets.org/tracker/.swZbl 27291. Cited on p. 40.
- [6] G. A. Cavagna, P. Franzetti, N. C. Heglund, and P. Willems. The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. Journal of Physiology, 399: 89-92, 1988. doi: 10.1113/jphysiol.1988.sp017069. PubMed Central PMCID: PMC1191653. Cited on p. 44.
- [7] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. E cient bipedal robots based on passive-dynamic walkers. Science, 307 (5712): 1082-1085, 2005. doi: 10.1126/science.1107799. Cited on p. 26.
- [8] C. Cronin and K. T. Hansen. Resisted sprint training for the acceleration phase of sprinting. Strength and Conditioning Journal, 28 (4): 42-53, 2006. doi: 10.1519/00126548-200608000-00006. Cited on p. 39.
- [9] J. T. Daniels, R. A. Yarbrough, and C. Foster. Changes in V O2 max and running performance with training. European Journal of Applied Physiology and Occupational Physiology, 39 (4): 249-254, 1978. doi: 10.1007/bf00421448. Cited on p. 25.
- [10] M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl, R. Kram, and S. Lehman. How animals move: an integrative view. Science, 288 (5463): 100-106, 2000. doi: 10.1126/science.288.5463.100. Cited on p. 25.
- [11] C. T. Farley, J. Glasheen, and T. A. McMahon. Running springs: speed and animal size. Journal of Experimental Biology, 185: 71-86, 1993. URL https://pdfs.semanticscholar.org/813d/6358ca53e019bec3e60db9ae6d0fda4b71d4.pdf. Cited on p. 31.
- [12] H. Geyer and U. Saranli. Gait based on the spring-loaded inverted pendulum. In A. Goswami and P. Vadakkepat, editors, Humanoid Robotics: A Reference, pages 923-947. Springer, Dordrecht, 2017. doi: 10.1007/978-94-007-6046-2. Cited on p. 33.
- [13] H. Geyer, A. Seyfarth, and R. Blickhan. Spring-mass running: simple approximate solution and application to gait stability. J. Theoret. Biol., 232 (3): 315-328, 2005. ISSN 0022-5193. doi: 10.1016/j.jtbi.2004.08.015. MR 2120902; PMID: 15572057. Cited on pp. 32, 33, and 44.
- [14] H. Geyer, A. Seyfarth, and R. Blickhan. Compliant leg behaviour explains basic dynamics of walking and running. Proc.of the Royal Society B: Biol. Sci., 273 (1603): 2861-2867, 2006. doi: 10.1098/rspb.2006.3637. PubMed Central PMCID: PMC1664632. Cited on p. 26.
- [15] S. J. Hall. Equilibrium and human movement. In Basic Biomechanics, pages 433-435. McGraw-Hill, 2015. Online available at www.ftramonmartins.files.wordpress.com. Cited on p. 40.
- [16] A. Heck and P. Uylings. A jump forwards with mathematics and physics. In M. Joubert, A. Clark-Wilson, and M. McCabe, editors, Enhancing Mathematics Education Through Technology, Proceedings of ICTMT10, pages 129-134. Portsmouth, UK: University of Portsmouth, 2011. doi: 11245/1.360153. Online available at https://pdfs.semanticscholar.org. Cited on p. 27.
- [17] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev., 48 (2): 207-304, 2006. ISSN 0036-1445. doi: 10.1137/S0036144504445133. MR 2240592. Cited on p. 26.
- [18] Ł. Kidziński, S. P. Mohanty, C. Ong, Z. Huang, S. Zhou, A. Pechenko, A. Stelmaszczyk, P. Jarosik, M. Pavlov, S. Kolesnikov, S. Plis, Z. Chen, Z. Zhang, J. Chen, J. Shi, Z. Zheng, C. Yuan, Z. Lin, H. Michalewski, P. Miłoś, B. Osiński, A. Melnik, M. Schilling, H. Ritter, S. Carroll, J. Hicks, S. Levine, M. Salathé, and S. Delp. Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments. In The NIPS'17 Competition: Building Intelligent Systems, pages 121-153. Springer, Cham, 2018. Online available at arXiv:1804.00361. Cited on p. 26.
- [19] P. Maquet. Borelli: De motu animalium. A first treatise on biomechanics. Acta Orthopaedica Belgica, 55 (4): 541-546, 1989. Cited on p. 26.
- [20] T. A. McMahon and G. C. Cheng. The mechanics of running: How does stiffness couple with speed? Journal of Biomechanic, 23 (1): 65-78, 1990. doi: 10.1016/0021-9290(90)90042-2. Cited on pp. 26, 27, 29, 31, 35, 36, and 37.
- [21] A. Merker, D. Kaiser, and M. Hermann. Numerical bifurcation analysis of the bipedal spring-mass model. Phys. D, 291: 21-30, 2015. ISSN 0167-2789. doi: 10.1016/j.physd.2014.09.010. URL https://doi.org/10.1016/j.physd.2014.09.010. Cited on p. 26.
- [22] S. Mochon and T. A. McMahon. Ballistic walking. Journal of Biomechanics, 13 (1): 49-57, 1980. doi: 10.1016/0021-9290(80)90007-x. Cited on p. 26.
- [23] J. B. Morin, K. Tomazin, P. Edouard, and G. Y. Millet. Changes in running mechanics and spring-mass behavior induced by a mountain ultra-marathon race. Journal of Biomechanics, 44 (6): 1104-1107, 2011. doi: 10.1016/j.jbiomech.2011.01.028. Cited on pp. 41 and 44.
- [24] J. B. Morin, M. Bourdin, P. Edouard, N. Peyrot, P. Samozino, and J. R. Lacour. Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112 (11): 3921-3930, 2012. doi: 10.1007/s00421-012-2379-8. Cited on p. 44.
- [25] R. Müller, A. V. Birn-Jeffery, and Y. Blum. Human and avian running on uneven ground: a model-based comparison. Journal of the Royal Society Interface, 13 (122): 1-8, 2016. doi: 10.1098/rsif.2016.0529. PubMed Central PMCID: PMC5046951. Cited on p. 33.
- [26] O. Nemtsev, N. Nemtseva, and J. Kucherenko. Comparison of technique characteristics of sprint running at maximal and submaximal speeds. In 33d International Conference on Biomechanics in Sports. Poitiers, France, 2015. URL https://isbs2015.sciencesconf.org/57286/document. Cited on p. 39.
- [27] M. C. Nussbaum. Aristotle's De Motu Animalium: Text with translation, commentary, and interpretive essays. Princeton University Press, 1985. ISBN 9780691020358. Asturias Award for Soc. Sci. Cited on p. 26.
- [28] Ł. Płociniczak and Z. Wróblewska. Solution and asymptotic analysis of a boundary value problem in the spring-mass model of running. To appear in Nonlinear Dynamics, arXiv:1903.02247, 2019. doi: 10.1007/s11071-019-05462-z. Cited on pp. 26, 34, 35, 37, 38, 39, and 44.
- [29] J. Puleo and P. Milroy. Running Anatomy. Human Kinetics Australia, Champaign, IL, United States, first edition, 2010. ISBN 1492548294. Cited on p. 41.
- [30] U. Saranli and D. E. Koditschek. Template based control of hexapedal running. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1374-1379. Taipei, Taiwan, 2003. doi: 10.1109/ROBOT.2003.1241783. Cited on p. 26.
- [31] S. Siegler, R. Seliktar, and W. Hyman. Simulation of human gait with the aid of a simple mechanical model. Journal of Biomechanics, 15 (6): 415-425, 1982. doi: 10.1016/0021-9290(82)90078-1. Cited on p. 26.
- [32] M. Srinivasan and P. Holmes. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data? Journal of Theoretical Biology, 255 (1): 1-7, 2008. doi: 10.1016/j.jtbi.2008.06.034. Cited on p. 26.
- [33] K. R. Williams and P. R. Cavanagh. Relationship between distance running mechanics, running economy, and performance. Journal of Applied Physiology, 63 (3): 1236-1245, 1987. doi: 10.1152/jappl.1987.63.3.1236. Cited on p. 25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a92b70a-1c22-442c-99f7-a4031147438c