PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimating the Size of a Crater after an Underwater Explosion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There have been terrorist attacks in the Baltic region that used explosives to destroy underwater infrastructure, including the Nord Stream 1 and 2 gas pipelines. Data from the Danish National Seismic Network indicate that two explosions occurred on 26 Sept 2022, causing gas leaks from pipelines. While examining the data from 26 Sept, two disturbing events were observed in the Baltic Sea, which caused tremors of magnitude 2.3 and 2.1 on the Richter scale. Both events had high wave energy, indicating an explosion, not an earthquake. Based on the above data, it was decided to analyze the potential effects of underwater explosions in the area of the Nord Stream gas pipelines. From the point of view of ecology, the volume of material torn up from the bottom is essential. For this purpose, empirical formulas for explosions on land were used, and then the crater's size was estimated per the physics of the underwater explosion phenomenon. Calculations indicate that the explosion of 750 kg of TNT will raise about 20 m3 of the bottom volume into the water column. Because of the explosion, a gas bubble will form directly at the bottom, and it will suck the sand and the impurities contained in it and particles of dead organisms, bringing them to the surface and dispersing them in the water column. These attacks pose a severe environmental and safety risk as gas leaks from pipelines can cause harmful effects on marine ecosystems and people. It also violates international law and international agreements, including the United Nations Convention on the Law of the Sea and the Convention on the Protection of the Marine Environment in the Baltic Sea Region.
Twórcy
  • Construction Department, Mechanical and Electrical Engineering Faculty, Polish Naval Academy in Gdynia, ul. Smidowicza 69, 81-127 Gdynia, Poland
Bibliografia
  • 1. Nord Stream gas pipeline explosions [map + summary] (in Polish). In: wyborcza.pl. https://biqdata. wyborcza.pl/biqdata/7,159116,28964060,wybuchy-gazociagu-nord-stream-mapa-podsumowanie. html. Accessed 2 Nov 2022.
  • 2. GEUS has recorded shaking in the Baltic Sea. https://eng.geus.dk/about/news/news-archive/2022/ september/baltic. Accessed 2 Nov 2022.
  • 3. Vakulenko S. Shock and Awe: Who Attacked the Nord Stream Pipelines? In: Carnegie Endowment for International Peace. https://carnegieendowment. org/politika/88062. Accessed 2 Nov 2022.
  • 4. Łarzewski B., Hałas J., Powarzyński D., Lewandowski J., Piskur P. Design and Implementation of an Unmanned Underwater Vehicle with Hybrid Drive – REBA. PAR 2022, 26: 61–67.
  • 5. Olejnik A. Trends in the development of unmanned marine technology. Polish Hyperbaric Research 2016, 55: 7–28.
  • 6. Sanderson H., Czub M., Koschinski S., et al. Environmental impact of sabotage of the Nord Stream pipelines. 2023. https://doi.org/10.21203/ rs.3.rs-2564820/v1
  • 7. Sanderson K. Nord Stream pipeline blasts stirred up toxic sediment. Nature 2023, d41586-023-00746–2 8. Kiciński R., Szturomski B. Pressure wave caused by trinitrotoluene (TNT) underwater explosion – short review. Applied Sciences 2020, 10: #3433.
  • 9. Kiciński R., Szturomski B., Świątek K. Analysis of the possibility of a submarine implosion using finite element method. J Phys: Conf Ser 2021, 2130: #012006.
  • 10. Szturomski B. Modeling the effect of the underwater explosion to hull board in a numberic concept (in Polish). Akademia Marynarki Wojennej, Gdynia 2016.
  • 11. Cui P., Zhang A.M., Wang S. Small-charge underwater explosion bubble experiments under various boundary conditions. Physics of Fluids 2016, 28: #117103.
  • 12. Tarnowski M. Effects of aerial bombs (in Polish). Zarząd główny L.O.P.P, Warszawa 1938.
  • 13. Counter Improvised Explosive Devices. Post Blast Collection & Analysis - NATO training, 2021.
  • 14. Xu R., Chen L., Zheng Y., Li Z., Cao M., Fang Q. (2021) Study of Crater in the Gobi Desert Induced by Ground Explosion of Large Amounts of TNT Explosive up to 10 Tons. Shock and Vibration 2021: e7357877.
  • 15. Ambrosini R.D., Luccioni B.M., Danesi R.F., Riera J.D., Rocha M.M. Size of craters produced by explosive charges on or above the ground surface. Shock Waves 2002, 12: 69–78.
  • 16. Adushkin V.V., Khristoforov B.D. Craters of large‐ scale surface explosions. Combustion, explosion, and shock waves 2004, 40: 674–678.
  • 17. Cole R.H. Underwater Explosions. Princeton University Press, New Jersey 1948.
  • 18. Geers T.L., Hunter K.S. An integrated wave-effects model for an underwater explosion bubble. Boulder 2002.
  • 19. Reid W.D. The response of surface ships to underwater explosions. DSTO Aeronautical and M Research Laboratory, Melbourne, Vic. 1996.
  • 20. Szturomski B. Modeling the effect of the underwater explosion to hull board in a numberic concept (in Polish). Akademia Marynarki Wojennej, Gdynia, 2016.
  • 21. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y. Nonlinear interaction between gas bubble and free surface. Computers & Fluids 1996, 25: 607–628.
  • 22. Stiepanow W.C., Sipilin P.M., Nawagin J.S., Pankratow W.P. Tłoczenie Wybuchowe [Stamping with
  • an explosion - in Polish]. Wydawnictwa Naukowo-Techniczne, Warszawa 1968.
  • 23. Vannucchi de Camargo F. Survey on Experimental and Numerical Approaches to Model Underwater Explosions. Journal of Marine Science and Engineering 2019, 7: 15.
  • 24. Nowak P.R., Gajewski T., Peksa P., Sielicki P.W. Experimental verification of different analytical approaches for estimating underwater explosives. International Journal of Protective Structures 2022, 20414196221120510.
  • 25. Grządziela A., Szturomski B., Kluczyk M. Modeling of the Minehunters Hull Strenght. Advanced Materials Research 2014, 1036: 189–194.
  • 26. Koli S., Chellapandi P., Bhaskara Rao L., Sawant A. Study on JWL equation of state for the numerical simulation of near-field and far-field effects in underwater explosion scenario. Engineering Science and Technology, an International Journal 2020, 23: 758–768.
  • 27. Cudny K., Powierża Z. Selected issues of ship impact resistance (in Polish). Gdynia 1978.
  • 28. Geological map of the bottom of the Baltic Sea - computer elaboration (in Polish). Państwowy Instytut Geologiczny - PIB. https://www.pgi. gov.pl/gdansk/geologia-morza-i-wybrzeza/ opracowania/6393-mapa-geologiczna-dna-baltyku. html. Accessed 6 Apr 2023
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a92510f-018e-4e5d-8cae-d2c3ddca94fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.