Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This two-year research aimed to evaluate the efficacy of chemical preparations and the resistance of tomato cultivars (Amati and Bella) against the Phytophthora infestans pathogen causing fruit blight. Fungicides, including Metalaxyl, Azoxystrobin, Mancozeb, and Copper, were tested in seven combinations, and disease assessments were conducted using the McKinney Index. Results from 2021 and 2022 consistently demonstrated that the combination of Azoxystrobin and Metalaxyl exhibited the highest efficiency in protecting both cultivars against Phytophthora infestans, with infection rates as low as 5.30% and 4.43%, respectively. In addition to fungicide effectiveness, cultivar resistance analysis revealed that Bella consistently displayed higher sustainability to the pathogen compared to Amati, with infection rates ranging from 4.43% to 6.30% for Bella, compared to 5.30% to 7.03% for Amati. This enhanced resistance in Bella was attributed to its smaller vegetative mass. The study underscores the importance of meticulous systemic fungicide use to prevent the development of pathogen resistance. Furthermore, the research recommends adjusting the frequency of sprayings based on climatic conditions to optimize blight management strategies. This research provides valuable insights into effective blight management strategies, highlighting specific fungicide combinations, and emphasizing the resistance characteristics of tomato cultivars. These findings contribute to the development of sustainable practices for protecting tomatoes against Phytophthora infestans, ultimately aiding in the cultivation of more resilient and disease-resistant tomato crops.
Wydawca
Rocznik
Tom
Strony
292--300
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
autor
- Department of Plant Production, Faculty of Agribusiness, University of Haxhi Zeka, 30000 Peja, Kosovo
autor
- Department of Plant Production, Faculty of Agribusiness, University of Haxhi Zeka, 30000 Peja, Kosovo
Bibliografia
- 1. Belkhiter, S., Beninal, L., Bouznad, Z. 2023. Evaluating the Resistance of Tomato Cultivars to Algerian Phytophthora infestans Genotypes under Controlled Trial. Biology and Life Sciences Forum 27, 58.
- 2. Brus-Szkalej, M. 2019. The biology and ecology of Phytophthora infestans: the role of cell wall proteins in development, pathogenicity and potato defence activation. Acta Universitatis Agriculturae Sueciae, 81.
- 3. Chen F., Zhou Q., Xi J., Li D., Schnabel G., Zhan J. 2018. Analysis of RPA190 revealed multiple positively selected mutations associated with metalaxyl resistance in Phytophthora infestans. Pest Management Science, 74, 1916–1924.
- 4. Childers, R., Danies, G., Myers, K., Fei, Z., Small, I. M., Fry, W.E. 2015. Acquired Resistance to Mefenoxam in Sensitive Isolates of Phytophthora infestans. Phytopathology, 105(3), 342–349.
- 5. Cohen, Y., Rubin, A.E., Galperin, M. 2018. Oxathiapiprolin-based fungicides 386 provide enhanced control of tomato late blight induced by mefenoxam-insensitive 387 Phytophthora infestans. PLoS ONE, 13(9). DOI: 10.1371/journal.pone.0204523
- 6. FRAC (Fungicide Resistance Action Committee), 2024. website https://www.frac.info Accessed on 13th June 2024
- 7. Fry, W.E, Birch, P.R.J., Judelson, H.S., Grunwald, N.J., Danies, G., Everts, K.L., Gevens, A.J., Gugino, B.K., Johnson, D.A., Johnson, S.B., McGrath, M.T., Myers, K.L., Ristaino, J.B., Roberts, P.D., Secor, G., Smart, C.D. 2015. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 105, 966–981.
- 8. González-Tobón, J., Childers, R., Olave, C., Regnier, M., Rodríguez-Jaramillo, A., Fry, W., Restrepo, S., Danies, G. 2020. Is the Phenomenon of Mefenoxam-Acquired Resistance in Phytophthora infestans Universal?. Plant disease, 104(1), 211–221.
- 9. Hansen, Z.R., Small, I.M., Mutschler, M., Fry, W.E., Smart, C.D. 2014. Differential Susceptibility of 39 Tomato Varieties to Phytophthora infestans Clonal Lineage US-23. Plant disease, 98(12), 1666–1670.
- 10. Ivanov, A.A., Ukladov, E.O., Golubeva, T.S. 2021. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. Journal of fungi (Basel, Switzerland), 7(12), 1071.
- 11. Jansen J.P., Lauvaux S., Gruntowy J., Denayer J. 2017. Possible synergistic effects of fungicide-insecticide mixtures on beneficial arthropods. Pesticides and Beneficial Organisms IOBC-WPRS Bulletin, 125, 28–35.
- 12. Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A.G., Aguín Casal, O., Bakonyi, J., Cacciola, S.O., Cech, T., Chavarriaga, D., Cravador, A., Wenneker, M. 2016. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46(2), 134–163.
- 13. Keller, A.A., Huang, Y., Nelson, J. 2018. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. Journal of Nanoparticle Research, 20, 1–13. DOI: 10.1007/ S11051-018-4192-8/METRICS
- 14. Leesutthiphonchai, W., Vu, A.L., Ah-Fong, A.M.V., Judelson, H.S. 2018. How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. Phytopathology, 108(8), 916–924.
- 15. Maridueña-Zavala M.G., Freire-Peñaherrera A., Cevallos-Cevallos J.M., Peralta E.L. 2017. GCMS metabolite profiling of Phytophthora infestans resistant to metalaxyl. European Journal of Plant Pathology, 149, 563–574.
- 16. Martin, M.D., Vieira, F.G., Ho, S.Y., Wales, N., Schubert, M., Seguin-Orlando, A., Ristaino, J. B., Gilbert, M.T. 2016. Genomic Characterization of a South American Phytophthora Hybrid Mandates Reassessment of the Geographic Origins of Phytophthora infestans. Molecular biology and evolution, 33(2), 478–491.
- 17. McLeod, A., De Villiers, D., Sullivan, L., Coertze, S., Cooke, D.E.L. 2023. First report of Phytophthora infestans lineage EU23 causing potato and tomato late blight in South Africa. Plant disease, 1. DOI: 10.1094/PDIS-08-23-1511-PDN
- 18. Modesto, O.O., Anwar, M., He, Z., Larkin, R.P., Honeycutt, C.W. 2016. Survival potential of Phytophthora infestans sporangia in relation to environmental factors and late blight occurrence. Journal of Plant Protection Research, 56(1), 73–81. DOI: 10.1515/jppr-2016-0011
- 19. Montes M.S., Nielsen B.J., Schmidt S.G., Bødker L., Kjøller R., Rosendahl S. 2016. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance. Plant Pathology, 65, 744–753.
- 20. Ndala, R.I., Mbega, E.R. and Ndakidemi, P.A. 2019. Different Plant Extracts against Phytophthora infestans (Mont.) de Bary in Tomato in Vitro. American Journal of Plant Sciences, 10, 698–708.
- 21. Nuwamanya, A.M., Runo, S., Mwangi, M. 2023. Farmers’ perceptions on tomato early blight, fungicide use factors and awareness of fungicide resistance: Insights from a field survey in Kenya. PloS one, 18(1), e0269035. DOI: 10.1371/journal. pone.0269035
- 22. Olanya, O., Anwar, M., He Z., Larkin, R.P., Honeycutt, C.W. 2015. Survival potential of Phytophthora infestans sporangia in relation to environmental factors and late blight occurrence. Journal of plant protection research, 55(1), 73–81.
- 23. Pánek M., Ali A., Helmer Š. 2022. Use of metalaxyl against some soil plant pathogens of the class Peronosporomycetes – A review and two case studies. Plant Protect. Sci., 58, 92–10.
- 24. PCPB (Pesticides Control and Products Board), 2024. Website. https://www.pcpb.go.ke/ Accessed 10/01/2024
- 25. Pirondi, A., Brunelli, A., Muzzi, E., Collina, M. 2017. Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). Journal of General Plant Pathology, 83, 244-252.
- 26. Ristaino, J.B., Anderson, P.K., Bebber, D.P., Brauman, K.A., Cunniffe, N.J., Fedoroff, N.V., Finegold, C., Garrett, K.A., Gilligan, C.A., Jones, C.M., Martin, M.D., MacDonald, G.K., Neenan, P., Records, A., Schmale, D.G., Tateosian, L., Wei, Q. 2021. The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences of the United States of America, 118(23), e2022239118.
- 27. Sangeetha, J., Hospet R., Thangadurai, D., Adetunji, C.O., Islam, S., Pujari, N., Al-Tawaha, A.R.M.S. 2021. Nanopesticides, nanoherbicides, and nanofertilizers: the greener aspects of agrochemical synthesis using nanotools and nanoprocesses toward sustainable agriculture. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1663–1677. DOI: 10.1007/978-3-030-36268-3_44
- 28. Saville, A., Graham, K., Grünwald, N., Myers, K., Fry, W., Ristaino, J.B. 2015. Fungicide sensitivity of US genotypes of Phytophthora infestans(Mont.) de Bary to six oomycete-targeted compounds. Plant Dis., 99, 659–666.
- 29. Seidl Johnson, A.C., Jordan, S.A., Gevens, A.J. 2015. Efficacy of Organic and Conventional Fungicides and Impact of Application Timing on Control of Tomato Late Blight Caused by US-22, US-23, and US-24 Isolates of Phytophthora infestans. Plant disease, 99(5), 641–647.
- 30. Wang W., Liu D., Zhuo X., Wang Y., Song Z., Chen F., Pan Y., Gao Z. 2021. The RPA190-pc gene participates in the regulation of metalaxyl sensitivity, pathogenicity and growth in Phytophthora capsici. Gene, 764, 145081.
- 31. Wang, Z., Yue, L., Dhankher, O.P., Xing, B. 2020. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 142, 105831. DOI: 10.1016/J.ENVINT.2020.105831
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a905ab9-6f85-4a35-82e4-74dde3960294