PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of Mo addition on static recrystallization and grain growth behaviour in CoNiFeMn system subjected to prior deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the influence of Mo in the CoNiFeMn system during heat treatment after prior hot and cold rolling was investigated. At present, relatively few studies on static recrystallization and grain growth kinetics in high entropy alloys are available. This paper focuses on static recrystallization and grain growth kinetics as well as the influence of molybdenum on these phenomena. This work compares two alloys, CoNiFeMn and (CoNiFeMn)95Mo5, in relation to the formations of the brittle μ phase at room- and high-temperature plastic deformation regimes due to its negative affect on material ductility. Microstructures were characterized by energy dispersive X-ray spectroscopy analysis and by scanning electron microscopy, whereas the mechanical properties were assessed by tensile testing. The effect of recrystallization and grain growth behaviours on the microstructural evolution and the final mechanical properties was assessed. It was found that Mo addition into the CoNiFeMn system has a strong effect on both the static recrystallization and grain growth kinetics as well as the final mechanical properties.
Rocznik
Strony
art. no. e81, 2024
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
  • Academic Center of Materials and Nanotechnology, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
autor
  • Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopianska Str., 30-418 Krakow, Poland
autor
  • Department of Mechanical and Manufacturing Engineering, College of Engineering and Computing, Miami University, Oxford, OH, USA
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30 Mickiewicza Ave, 30‑059 Krakow, Poland
Bibliografia
  • 1. Yeh JW, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299-303. https://doi.org/10.1002/adem.200300567.
  • 2. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377(1-2):213-8. https://doi.org/10.1016/j.msea.2003.10.257.
  • 3. Mehta A, Sohn Y. High entropy and sluggish diffusion ‘core’ effects in senary FCC Al-Co-Cr-Fe-Ni-Mn alloys. ACS Comb Sci. 2020;22(12):757-67. https://doi.org/10.1021/acscombsci.0c00096.
  • 4. Chen J, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys Compd. 2018;760:15-30. https://doi.org/10.1016/j.jallcom.2018.05.067.
  • 5. Tang Z, Zhang S, Cai R, Zhou Q, Wang H. Designing high entropy alloys with dual fcc and bcc solid-solution phases: structures and mechanical properties. Metall Mater Trans A Phys Metall Mater Sci. 2019;50(4):1888-901. https://doi.org/10.1007/s11661-019-05131-1.
  • 6. Liu F, Liaw PK. Recent progress with BCC-structured high-entropy alloys. Metals. 2022;12:501.
  • 7. Gao MC, Zhang B, Guo SM, Qiao JW, Hawk JA. High-entropy alloys in hexagonal close-packed structure. Metall Mater Trans A Phys Metall Mater Sci. 2016;47(7):3322-32. https://doi.org/10.1007/s11661-015-3091-1.
  • 8. Rogal L, Ikeda Y, Lai M, Kormann F, Kalinowska A, Grabowski B. Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc-Ti-Zr-Hf-Re system. Mater Des. 2020;192:108716. https://doi.org/10.1016/j.matdes.2020.108716.
  • 9. Wang B, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr Mater. 2018;155:54-7. https://doi.org/10.1016/j.scriptamat.2018.06.013.
  • 10. Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385-9. https://doi.org/10.1007/s12598-014-0268-5.
  • 11. George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435-74. https://doi.org/10.1016/j.actamat.2019.12.015.
  • 12. Cantor B. Multicomponent high-entropy Cantor alloys. Prog Mater Sci. 2021;120:100754. https://doi.org/10.1016/j.pmatsci.2020.100754.
  • 13. Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743-55. https://doi.org/10.1016/j.actamat.2013.06.018.
  • 14. Zeng Z, et al. Mechanical properties of Cantor alloys driven by additional elements: a review. J Mater Res Technol. 2021;15:1920-34. https://doi.org/10.1016/j.jmrt.2021.09.019.
  • 15. Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61(7):2628-38. https://doi.org/10.1016/j.actamat.2013.01.042.
  • 16. Ma D, Yao M, Pradeep KG, Tasan CC, Springer H, Raabe D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015;98:288-96. https://doi.org/10.1016/j.actamat.2015.07.030.
  • 17. Cichocki K, Bała P, Kozieł T, Cios G, Schell N, Muszka K. Effect of Mo on phase stability and properties in FeMn-NiCo high-entropy alloys. Metall Mater Trans A Phys Metall Mater Sci. 2022;53(5):1749-60. https://doi.org/10.1007/s11661-022-06629-x.
  • 18. Qin G, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J Mater Sci Technol. 2019;35(4):578-83. https://doi.org/10.1016/j.jmst.2018.10.009.
  • 19. Jain A, et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013. https://doi.org/10.1063/1.4812323.
  • 20. Guo B, Ray RK, Yoshida S, Bai Y, Tsuji N. In-situ observations of static recrystallization and texture formation in a cold-rolled CoCrFeMnNi high entropy alloy. Scr Mater. 2022;215:114706. https://doi.org/10.1016/j.scriptamat.2022.114706.
  • 21. Zheng C, et al. Recrystallization and grain growth behavior of variously deformed CoCrFeMnNi high-entropy alloys: microstructure characterization and modeling. J Mater Res Technol. 2022;20:2277-92. https://doi.org/10.1016/j.jmrt.2022.07.182.
  • 22. Klimova MV, Shaysultanov DG, Zherebtsov SV, Stepanov ND. Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater Sci Eng A. 2019;748:228-35. https://doi.org/10.1016/j.msea.2019.01.112.
  • 23. Bozzolo N, Bernacki M. Viewpoint on the formation and evolution of annealing twins during thermomechanical processing of FCC metals and alloys. Metall Mater Trans A Phys Metall Mater Sci. 2020;51(6):2665-84. https://doi.org/10.1007/s11661-020-05772-7.
  • 24. Wu H, Du L, Ai Z, Liu X. Static recrystallization and precipitation behavior of a weathering steel microalloyed with Vanadium. J Mater Sci Technol. 2013;29(12):1197-203. https://doi.org/10.1016/j.jmst.2013.10.030.
  • 25. Annasamy M, Haghdadi N, Taylor A, Hodgson P, Fabijanic D. Static recrystallization and grain growth behaviour of Al 0.3 CoCrFeNi high entropy alloy. Mater Sci Eng A. 2019;754:282-94. https://doi.org/10.1016/j.msea.2019.03.088.
  • 26. Wu Z, Bei H, Otto F, Pharr GM, George EP. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131-40. https://doi.org/10.1016/j.intermet.2013.10.024.
  • 27. Dąbrowa J, et al. Demystifying the sluggish diffusion effect in high entropy alloys. J Alloys Compd. 2019;783:193-207. https://doi.org/10.1016/j.jallcom.2018.12.300.
  • 28. Jin K, Zhang C, Zhang F, Bei H. Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Mater Res Lett. 2018;6(5):293-9. https://doi.org/10.1080/21663831.2018.1446466.
  • 29. Kucza W, Dąbrowa J, Cieślak G, Berent K, Kulik T, Danielewski M. Studies of ‘sluggish diffusion’ effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J Alloys Compd. 2018;731:920-8. https://doi.org/10.1016/j.jallcom.2017.10.108.
  • 30. Huang YC, Su CH, Wu SK, Lin C. A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy. 2019;21(3):297. https://doi.org/10.3390/e21030297.
  • 31. Basu I, De Hosson JTM. Strengthening mechanisms in high entropy alloys: fundamental issues. Scr Mater. 2020;187:148-56. https://doi.org/10.1016/j.scriptamat.2020.06.019.
  • 32. Ma Y, Song W, Bleck W. Investigation of the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel via in situ synchrotron X-ray diffraction during a tensile test. Materials (Basel). 2017;10(10):1-16. https://doi.org/10.3390/ma10101129.
  • 33. Haridas RS, Agrawal P, Yadav S, Agrawal P, Gumaste A, Mishra RS. Work hardening in metastable high entropy alloys: a modified five-parameter model. J Mater Res Technol. 2022;18:3358-72. https://doi.org/10.1016/j.jmrt.2022.04.016.
  • 34. Liang X, et al. Static recrystallization and texture evolution of cold-rolled powder metallurgy CoCrFeNiN0.07 high-entropy alloy. J Alloys Compd. 2021;862:158602. https://doi.org/10.1016/j.jallcom.2021.158602.
  • 35. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater. 2013;68(7):526-9. https://doi.org/10.1016/j.scriptamat.2012.12.002.
  • 36. Zamani MR, Mirzadeh H, Malekan M, Cao SC, Yeh J-W. Grain growth in high-entropy alloys (HEAs): a review, no. 0123456789. Springer US; 2022.
  • 37. Naghizadeh M, Mirzadeh H. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A Phys Metall Mater Sci. 2016;47(12):5698-703. https://doi.org/10.1007/s11661-016-3764-4.
  • 38. Burke JE. Some factors affecting the rate of grain growth in metals. Trans Am Inst Min Metall Eng. 1949;180:73-91.
  • 39. Beck PA, Towers J, Manly WD. Grain growth in 70-30 brass. Trans Am Inst Min Metall Eng. 1948;175:162-77.
  • 40. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a87c4d4-7894-4689-a18a-2270e97bb729
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.