PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

System vibration control using linear quadratic regulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Balancing a bipedal robot movement against external perturbations is considered a challenging and complex topic. This paper discusses how the vibration caused by external disturbance has been tackled by a Linear Quadratic Regulator, which aims to provide optimal control to the system. A simulation was conducted on MATLAB in order to prove the concept. Results have shown that the linear quadratic regulator was successful in stabilizing the system efficiently.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 14 poz., tab., wykr.
Twórcy
  • School of Engineering, Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, ESTONIA
autor
  • School of Engineering, Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, ESTONIA
autor
  • School of Engineering, Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, ESTONIA
autor
  • School of Engineering, Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, ESTONIA
Bibliografia
  • [1] Bahdi E. (2018): Development of a Locomotion and Balancing Strategy for Humanoid Robots.– M.S. Thesis, Computer Engineering, University of Denver, p.102.
  • [2] Zhang L. and Fu C. (2018): Predicting foot placement for balance through a simple model with swing leg dynamics.– Journal of Biomechanics, vol.77, pp.155-162.
  • [3] Reimann H., Fettrow T. and Jeka J. J. (2018): Strategies for the control of balance during locomotion.– Kinesiology Review, vol.7, No.1, pp.18-25.
  • [4] Shafiee-Ashtiani M., Yousefi-Koma, A., Shariat-Panahi, M. and Khadiv, M. (2017): Push recovery of a humanoid robot based on model predictive control and capture point.– 4-th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, pp.433-438.
  • [5] Vaz J. C. and Oh P. (2020): Material handling by humanoid robot while pushing carts using a walking pattern based on capture point.– Proceedings - IEEE International Conference on Robotics and Automation, pp.9796-9801.
  • [6] Jo H.M. and Oh J.H. (2018): Balance recovery through model predictive control based on capture point dynamics for biped walking robot.– Robotics and Autonomous Systems, No.105, pp.1-10.
  • [7] Araffa K. and Tkach M. (2019): Implementation and simulation a model predictive control for motion generation of biped robot.– Adaptive Systems of Automatic Control, vol.2, No.35, pp.3-12.
  • [8] White J., Swart D. Hubicki C. (2020): Force-based control of bipedal balancing on dynamic terrain with the tallahassee cassie robotic platform.– Proceedings - IEEE International Conference on Robotics and Automation, pp.6618-6624.
  • [9] Al-Shuka H.F.N., Corves B. J., Vanderborght B. and Zhu W.-H. (2014): Zero-Moment Point-Based Biped Robot with Different Walking Patterns.– International Journal of Intelligent Systems and Applications, vol.7, No.1, pp.31-41.
  • [10] DeHart B. J. (2019): Dynamic Balance and Gait Metrics for Robotic Bipeds.– Thesis for PhD in electrical and Computer Engineering, University of Waterloo, p.153.
  • [11] Araffa K. and Tkach M. (2019): Implementation and simulation a model predictive control for motion generation of biped robot.– Adaptive Systems of Automatic Control, vol.2, No.35, pp.3-12.
  • [12] Roose A.I., Yahya S. and Al-Rizzo H. (2017): Fuzzy-logic control of an inverted pendulum on a cart.– Computers and Electrical Engineering, No.61, pp.31-47, https://doi.org/10.1016/j.compeleceng.2017.05.016.
  • [13] Abut T. and Soyguder S. (2019): Real-time control and application with self-tuning PID-type fuzzy adaptive controller of an inverted pendulum. Industrial Robot, vol.46, No.1, pp.159-170.
  • [14] Hazem Z. Ben, Fotuhi M.J. and Bingül Z. (2020): Development of a Fuzzy-LQR and Fuzzy-LQG stability control for a double link rotary inverted pendulum. Journal of the Franklin Institute, vol.357, No.15, pp.10529-10556.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a7e3ac5-f423-4f5e-86ad-0bb3ba10bcd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.