Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Waste and associated risks are becoming an increasingly noticeable problem in environmental protection in our time. The management of especially industrial waste is a difficult and at the same time a significant problem. Incineration is the basic process of thermal utilization. The combustion process is not neutral for the environment, and is associated with the emission of dust, sulfur and nitrogen compounds as well as dioxins and furans. Therefore, combustion installations must be equipped with a number of devices for cleaning the exhaust gases. The most primary process of obtaining useful energy from biomass, i.e. combustion, is characterized by specific dynamics. Regardless of the technique, it is affected by physical and chemical processes. The condition of economic and technical correctness of co-firing is maintaining the optimal share of biomass in the fuel mixture and its appropriate quality. Effective co-firing of the prepared mixture can be carried out in existing grate, fluid and dust boilers. Pyrolysis is a stage in both the combustion and gasification process. In this process, as a result of the thermal decomposition of the structure of the organic fuel, we obtain carbonizate as well as tar and gas products. In the pyrolysis process, solid fuel is transformed into two other forms: gaseous fuel and liquid fuel. The share of individual forms and their composition depends on the type and composition of biomass, as well as the method of conducting the pyrolysis process. In highly developed countries, works are ongoing to improve and increase the efficiency of biomass combustion processes and co-firing of biomass with coal, also in circuits with a syngas gas turbine. In addition to the development of technology, great emphasis is also placed on the search for new methods of biomass processing, as well as methods of processing polymeric materials, which until now have caused difficulties in processing.
Czasopismo
Rocznik
Tom
Strony
337--342
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
- Politechnika Koszalińska, Wydział Mechaniczny, Katedra Procesów i Urządzeń Przemysłu Spożywczego, Racławicka 15-17, 75-620 Koszalin
autor
- Politechnika Koszalińska, Wydział Mechaniczny, Katedra Procesów i Urządzeń Przemysłu Spożywczego, Racławicka 15-17, 75-620 Koszalin
Bibliografia
- 1. Bodzay, B., Bánhegyi, G., Polymer waste: controlled breakdown or recycling?. Int. J. Des. Sci. Tech., 22(2), 2016
- 2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782, 2017
- 3. Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611, 2017
- 4. Rydzkowski T., Teoretyczne i doświadczalne podstawy efektywnego wytłaczania ślimakowo-tarczowego w recyklingu materiałów i kompozytów polimerowych., Monografia, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2012
- 5. Rydzkowski T., Recykling odpadowych tworzyw polimerowych., Recykling, 5, s. 25-25, 2009
- 6. Guide to Energy Efficiency Opportunities in the Canadian Plastics Processing Industry, Natural Resources Canada’s Office of Energy Efficiency, Canada, 13, 33, 2007
- 7. James D. H., Castor W. M., Styrene Ullmann’s Encyclopedia of industrial Chemistry, Wiley-VCH, 2005
- 8. https://www.plasticseurope.org/pl/resources/publications/1999-tworzywa-fakty-2019
- 9. Lipinsky E., Wesson R., Characterization of the Top 12 U.S. Commodity Polymers. A Pacific Northwest National Laboratory report submitted to the U.S. Department of Energy, Biological and Chemical Technology Research Program, 1995
- 10. https://www.plasticseurope.org/pl/focusareas/circular-economy/zero-plastics-landfill/recyclingand-energy-recovery
- 11. Nature Comunnications 9:2157 DOI: 10.1038/s41467-018-04565-2 | www.nature.com/naturecommunications, 2018
- 12. Anuar Sharuddin S., Abnisa F., Wan Daud W., Aroua M., A review on pyrolysis of plastic wastes. Energy Convers Manage, p. 115:308–26, 2016
- 13. Abnisa F., Daud W., Sahu J., Pyrolysis of mixtures of palm shell and polystyrene: an optional method to produce a high-grade of pyrolysis oil. Environ Prog Sustain Energy, 33(3), p. 1026–33, 2014
- 14. Pinto F., Costa P., Gulyurtlu I., Cabrita I., Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J Anal Appl Pyrolysis, 51, p. 39–55, 1998
- 15. Matsumoto S., Grause G., Kameda T., Yoshioka T. Pyrolysis of mixed plastics in the fluidized bed using hard burnt lime as bed material. The 5th ISFR, Chengdu, China; 2009
- 16. Miandad R., Barakat M., et all, Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegradation 2016.
- 17. Kirby M., et all, The role of thermo-catalytic reforming for energy recovery from food and drink supply chain wastes. Energy Procedia 123, p. 15–21, 2017
- 18. Neumann, J., et all, The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process. Waste Manage, 47, p. 141-148, 2016
- 19. Bridgwater A., et all, An overview of fast pyrolysis of biomass, Organic Geochemistry, 30, p. 1479-1493, 1999
- 20. Bridgewater A., Biomass fast pyrolysis, Thermal Science, 8, p. 21-50, 2004
- 21. Mohan D., Pittman C., Steele P., Pyrolysis of wood/biomass for bio-oil: a critical review, Energy & Fuels, 20, p. 848-889, 2006
- 22. Bridgwater A., Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, 38, p. 68-94, 2012
- 23. Ryms M., et all, Pyrolysis process of whole waste tires as a biomass energy recycling. Ecol Chem Eng S. 20(1), p. 93-107, 2013
- 24. Pilawski M, Grzybek A, Rogulska M. Ecol and Technol., 8(2), p. 48-53, 2000
- 25. Ryms M., et all, Pyrolysis process of whole waste tires as a biomass energy recycling., Ecol Chem Eng S. 20(1), p. 93-107, 2013
- 26. Walendziewski J., Continuous flow cracking of waste plastics., Fuel Processing Technology 86, p. 1265-1278, 2005
- 27. Brems A., et al., Polymeric Cracking of Waste Polyethylene-Terephthalate to Chemicals and Energy, International Journal of Sustainable Engineering, 3, 4, p. 232-245, 2010
- 28. Kijeński J., Kijeńska M., Migdał A., Współzgazowanie - strategiczny kierunek zagospodarowania odpadów tworzyw polimerowych. Polimery, 59, 5, 2014
- 29. SVZ Schwarze Pumpe gasifier coal and wastes for CHP, Modern Power Systems, 9, 1996
- 30. Babu S.P.: Workshop No. 1: Perspectives on Biomass Gasification, IEA Bioenergy Agreement, Task 33: Thermal Gasification of Biomass, May 2006.
- 31. Kijeński J., Rejewski P.: „Synteza produktów chemicznych z gazu ze zgazowania węgla”, w „Studium koncepcyjne wybranych technologii perspektywicznych procesów i produktów konwersji węgla - osiągnięcia i kierunki badawczo-rozwojowe, tom 2: Synteza produktów chemicznych” (red. Kijeński J., Ściążko M.), Wydawnictwo Instytutu Chemicznej Przeróbki Węgla
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a7d2c41-c683-40a7-ae06-e88d78487134