PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a compact structure to realize the demultiplexing operation for dense wavelength division multiplexing communication systems using improved shell-type ring resonators in a photonic crystal structure. The cross-section of the structure is 790 μm2 and is desirable for integration based on popular planar technology. To improve power transmission coupling efficiency, we introduce the phase matching condition between ring resonators and waveguides; the results exhibit near 100% transmission efficiency. To obtain a high quality factor, we use interior lower refractive indices spheres inside the ring resonators as the mirrors; a quality factor as high as 15497 is achieved. The average pass bands of channels are near 0.1 nm, and the channel spacing is approximately 0.6 nm. The wavelengths of the demultiplexer are 1549, 1549.7, 1550.3 and 1550.9 nm. The crosstalk is between –14 and –29 dB, and the mean value of the crosstalk is –18.39 dB.
Czasopismo
Rocznik
Strony
553--564
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
autor
  • Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
  • [1] IEEE 802.3ba, IEEE Standard, 2010; http://standards.ieee.org/about/get/802/802.3.html
  • [2] KANAZAWA S., FUJISAWA T., NUNOYA N., OHKI A., TAKAHATA K., SANJOH H., IGA R., ISHII H., Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMFtransmission, Journal of Lightwave Technology 31(4), 2013, pp. 602–608.
  • [3] Fujitsu, 100GE CFP Transceiver, Part No. FIM37201, 2013; http://jp.fujitsu.com/group/foc/en/services/optical-modules/100gcfp/
  • [4] FUJISAWA T., KANAZAWA S., ISHII H., NUNOYA N., KAWAGUCHI Y., OHKI A., FUJIWARA N., TAKAHATA K., IGA R., KANO F., OOHASHI H., 1.3-μ m 4×25-Gb/s monolithically integrated light source for metro area 100-Gb/s Ethernet, IEEE Photonics Technology Letters 23(6), 2011, pp. 356–358.
  • [5] ARUGA H., MOCHIZUKI K., ITAMOTO H., TAKEMURA R., YAMAGISHI K., SUGITATSU A., Integrated receiver for 100 GbE, [In] 16th Opto-Electronics and Communications Conference, OECC 2011, Kaohsiung, Taiwan, 2011, pp. 460–461.
  • [6] YOSHIMATSU T., NADA M., OGUMA M., YOKOYAMA H., OHNO T., DOI Y., OGAWA I., TAKAHASHI H., YOSHIDA E., Compact and high-sensitivity 100-Gb/s (4×25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer, Optics Express 20(26), 2012, pp. B393–B398.
  • [7] SONG X., STASSAR P., ZENG L., ZHAI S., WANG X., CHEN W., ZHOU W., Considerations on options for 400 GE optical interfaces, Presented at IEEE 400 GbESG Interim, Victoria, Canada, 2013; http://www.ieee802.org/3/400GSG/public/13_05/ song_400_01_0513.pdf
  • [8] TURKIEWICZ J.P., DE WAARDT H., Low complexity up to 400-Gb/s transmission in the 1310-nm wavelength domain, IEEE Photonics Technology Letters 24(11), 2012, pp. 942–944.
  • [9] TORRES-FERRERA, P., GUTIÉRREZ-CASTREJÓN R., Impact of channel-spacing on next 400 Gb/s Ethernet 40-km PMD based on 16×25 Gb/s WDM architecture, Optical Fiber Technology 20(3), 2014, pp. 177–183.
  • [10] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, p. 2059.
  • [11] SHANHUI FAN, JOHNSON S.G., JOANNOPOULOS J.D., MANOLATOU C., HAUS H.A., Waveguide branches in photonic crystals, Journal of the Optical Society of America B 18(2), 2001, pp. 162–165.
  • [12] SHARKAWY A., SHOUYUAN SHI, PRATHER D.W., Multichannel wavelength division multiplexing with photonic crystals, Applied Optics 40(14), 2001, pp. 2247–2252.
  • [13] KOSHIBA M., Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers, Journal of Lightwave Technology 19(12), 2001, pp. 1970–1975.
  • [14] CHUN-CHIH WANG, LIEN-WEN CHEN, Channel drop filters with folded directional couplers in two-dimensional photonic crystals, Physica B: Condensed Matter 405(4), 2010, pp. 1210–1215.
  • [15] ROBINSON S., NAKKEERAN R., PCRR based add drop filter for ITU-T G.694.2 CWDM systems, Optik – International Journal for Light and Electron Optics 124(5), 2013, pp. 393–398.
  • [16] NIEMI T., FRANDSEN L.H., HEDE K.K., HARPOTH A., BOREL P.I., KRISTENSEN M., Wavelength-division demultiplexing using photonic crystal waveguides, IEEE Photonics Technology Letters 18(1), 2006, pp. 226–228.
  • [17] CUESTA-SOTO F., MARTINEZ A., GARCIA-BANOS B., MARTI J., Numerical analysis of all-optical switching based on a 2-D nonlinear photonic crystal directional coupler, IEEE Journal of Selected Topics in Quantum Electronics 10(5), 2004, pp. 1101–1106.
  • [18] TAO LIU, ZAKHARIAN A., RATHNAKUMAR R., FALLAHI M., MOLONEY J.V., MANSURIPUR M., Applications of photonic crystals in optical data storage, Proceedings of SPIE 5380, 2004, pp. 430–438.
  • [19] BENISTY H., CAMBOURNAC C., VAN LAERE F., VAN THOURHOUT D., Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering, Journal of Lightwave Technology 28(8), 2010, pp. 1201–1208.
  • [20] LENGLÉ K., GAY M., BRAMERIE L., SIMON J.C., COMBRIÉ S., LEHOUCQ G., DE ROSSI A., MALAGUTI S., BELLANCA G., TRILLO S., Wavelength division demultiplexing and crosstalk assessment of a photonic crystal filter, IEEE Photonics Technology Letters 24(23), 2012, pp. 2109–2111.
  • [21] ROSTAMI A., ALIPOUR BANAEI H., NAZARI F., BAHRAMI A., An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure, Optik – International Journal for Light and Electron Optics 122(16), 2011, pp. 1481–1485.
  • [22] ROSTAMI A., NAZARI F., ALIPOUR BANAEI H., BAHRAMI A., A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure, Photonics and Nanostructures – Fundamentals and Applications 8(1), 2010, pp. 14–22.
  • [23] RAKHSHANI M.R., MANSOURI-BIRJANDI M.A., Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators, Physica E: Low-dimensional Systems and Nanostructures 50, 2013, pp. 97–101.
  • [24] ALIPOUR-BANAEI H., MEHDIZADEH F., SERAJMOHAMMADI S., A novel 4-channel demultiplexer based on photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 124(23), 2013, pp. 5964–5967.
  • [25] BOUMAMI S., NAOUM R., New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal, Optik – International Journal for Light and Electron Optics 125(23), 2014, p. 7072–7074.
  • [26] ZHAO CHEN, RU HU, LUNA CUI, LI YU, LULU WANG, JINGHUA XIAO, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems, Optics Communications 320, 2014, pp. 6–11.
  • [27] RAWAL S., SINHA R.K., Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer, Optics Communications 282(19), 2009, pp. 3889–3894.
  • [28] DJAVID M., MONIFI F., GHAFFARI A., ABRISHAMIAN M.S., Heterostructure wavelength division demultiplexers using photonic crystal ring resonators, Optics Communications 281(15–16), 2008, pp. 4028–4032.
  • [29] XUAN ZHANG, QINGHUA LIAO, TIANBAO YU, NIANHUA LIU, YONGZHEN HUANG, Novel ultracompact wavelength division demultiplexer based on photonic band gap, Optics Communications 285(3), 2012, pp. 274–276.
  • [30] BING CHEN, CHUNLIANG LIU, GUIZHONG LIU, A compact wavelength division de-multiplexer based on directional coupling of one-dimensional photonic crystal waveguides, Optics Communications 285(24), 2012, pp. 5100–5106.
  • [31] LIAO QING-HUA, FAN HONG-MING, CHEN SHU-WEN, WANG TONG-BIAO, YU TIAN-BAO, HUANG YONG-ZHEN, The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators, Optics Communications 331, 2014, pp. 160–164.
  • [32] TALEBZADEH R., SOROOSH M., A high quality complete coupling 4-channel demultiplexer based on photonic crystal ring resonators, Optoelectronics and Advanced Materials – Rapid Communications 9(1–2), 2015, pp. 5–9.
  • [33] JOHNSON S.G., JOANNOPOULOS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optics Express 8(3), 2001, pp. 173–190.
  • [34] MIN QIU, Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals, Applied Physics Letters 81(7), 2002, pp. 1163–1165.
  • [35] STRUTT J.W. (LORD RAYLEIGH), Teoriya zvuka, Vol. 2, Gostekhizdat, Moscow, 1955.
  • [36] TALEBI R., ABBASIAN K., ROSTAMI A., Analytical modeling of quality factor for shell type microsphere resonators, Progress in Electromagnetics Research B 30, 2011, pp. 293–311.
  • [37] CHENG-CHUNG LEE [Ed.], The Current Trends of Optics and Photonics, Topics in Applied Physics, Vol. 129, Springer Netherlands, 2015.
  • [38] YUEYU XIAO, SAILING HE, An MMI-based demultiplexer with reduced cross-talk, Optics Communications 247(4–6), 2005, pp. 335–339.
  • [39] MARTELUCCI S, CHESTER A.N. [Eds.], Integrated Optics: Physics and Applications, Series B: Physics, Vol. 91, Plenum Press, New York, 1983.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a7c932c-b3e2-441e-a990-aa4d29e64e96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.